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1. INTRODUCTION

The research described in this report is concerned with the transient behavior of

linearly constrained wideband adaptive array sensors. The intent of this analysis is to

develop r, computationally inexpensive constrained sensor which is capable of quick

convergence in - dynamic signal environment. Various structures will be examined aiiJ

their transient performance will be evaluated through simulation.

The use of multichannel space-time processors has a proven value in the detection

and estimation of signals which are received at spatially separated sensors. The benefit of

utilizing such an array of receiving sensor elements to improve signal reception has long

been recognized in the fields of communications [11, radar [2], sonar [3,4] and seismology

in a dynamic signal environment it is desirable to have the processor sense the

presence of interference noise sources and automatically adapt itself in order to both suppress

the interference and enhance the desired signal reception. The manner in which these dual

functions are realized is through the use of an adaptive control system which updates the

parameters of an array processor in order to minimize some performance index. This process

is depicted in figure 1. T~he goal of the entire system is to produce an output which is the

best estimate of a particular waveform of the composite observation data in some statistical

sense. This must be accomplished with little or no a priori knowledge of the signal

environment. The first adaptive array research can be traced to the late 1950's and early

1960's [6,7,8,9]. Much research has been done on adaptive sensors since these early
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Figure 1 Adaptive Array Sensor

developments, and the use of adaptive arrays have been, incorporated into many modem

signal processing systems.

Thus, the problem at hand is characterized by a need to optimize the reception of

one or more desired signals when multiple desired and undesired wideband directional

sources impinge upon an array of passive receiving sensor elements. The traditional solution

to this problem is the utilization of an adaptive tapped-delay-line filter following each

eleriment of the array. The rationale for this solution is based upon the stability properties of

the finite impulse response, ciass of filters coupled with the ability of the tapped-delay-line

filter to process signals which encompass an appreciable bandwidth. The choice of adaptive

algorithm for updating the coefficients of the adaptive filters in this study is restricted to the

computationally modest stochastic gradient class.

The difficulty encountered with the traditional method of processing described above

is that a dependency exists between the speed of convergence of the adaptive processor and

the range of the eigenvalues of the observation data correlation matrix. The methodology

which this research follows is to utilize different adaptive structures in an attempt to

2
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transform the observation data into a domain such that the resulting transformed correlation

matrix exhibits a smaller eigenvalue spread or the aforementioned dependency is relieved.

A. Organizaticn of the Report

This section will introduce the organization cf the research to be presented. Section

I.B reviews estimazion theory and derives the discrete-time Wiener filter. In Section I.C,

we extend the previous results to the multichannel wideband array case. Section I.D then

derives and analyzes the classical least-mean square (LMS) algorithm.

One short coming of the early LMS adaptive array systems was the degradation of

the desired signal while attempting to minimize interference in the receiving sensor

sidelobes. Through the imposition of hard constraints on certain aspects of the processor

we can guarantee some desirable responses regardless of the external environment.

The constraint of interest in this research is realized by defining the frequency

response of the processor in the direction of the desired signal. Through the enforcemernt

of this frequency response in the desired signal direction, one guarantees that the adaptation

process can not cause its degradation.

The second chapter derives three linearly constrained wideband adaptive array

sensors with tapped-delay-line structure. The first of these, termed the direct form, was

originally conceived by Frost [11]. The second form is a partitioned realization which is

shown to be identical to the direct form. This form, introduced by Griffiths [ 15], is derived

solely to facilitate the development of the third form. The final form, termed the Generalized

Sidelobe Canceller (GSC), was first presented by Applebaum and Chapman [12], and later

extended by Griffiths [13]. The GSC form is then used extensively in this research.



The thi, d chapter is concerned with replacing the GSC tapped-delay-line filter

structure with orthogonal transform domain filter structures. The Discrete Fourier

Transform (DFT), Discrete Cosine Transform (DCT), lattice and Gram-Schmidt structures

are examined, and a new frequency subband normalization algorithm is introduced.

Simulation results are presented to compare the different structures.

The fourth chapter provides an overall comparison of the different structures

considered, examines the results of the last chapter, presents the cop. clusions of this research

and identifies areas for further research.

B_ Estimation Theory f and Wienr .iltgrM*2

This section considers discrete time estimation theory and derives the scalar form of

the Wiener filter. The derivation in this section follows Gelb [32] and Widrow [201. For a

more thorough treatment and derivation in continuous time, one is referred to Van Trees

[16]. In simple terms, estimation is concerned with the use of information derived from

observations in order to make decisions about parameters of interest that are optimal in some

sense. The adaptive sensor problem is to estimate a signal of interest s(k), which is observed

only in the presence of additive noise n(k). That is to say, given a received observation

signal sequence x(k) such that

x(k)=s(k)+n(k), k=l,2,... (I-1)

we desire to process it in order to obtain an estimate y(k) =(k). The observation data x(k)

is a random variable whose statistics are formed from those of both the signal and the noise.

"The processing or filtering is shown in figure 2. In section A of this chapter we mentioned

4
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Figure 2 Filtering Operation

__X(k) 
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I~-2 X- X(Lk -

y(k)

Figure 3 Tapped-Delay-Line FIR Filter

that we were interested in an array processor which had a finite impulse response. The FIR

filter is represented by its impulse response d noted h(k) on the box in figure 2.

Consider the linear tapped-delay-line (TDL) filter shown in figure 3. This filter

clearly has a finite duration impulse response haracterized by the sequence

h(k) =W (1-2)

5



where W is a J-dimensional vector and the filter is therefore termed a FIR filter of order J.

The flotation Z- in the boxes of figure 2 represent a unit time delay. We assume that the

filter is driven by the random process x(k) and that this process is wide-sense stationary; it

is characterized by a mean value which is independent of time

Elx(k)l = a (I-3)

where (x is a constant (assumed zero for simplicity) and a correlation function

E[x(m)x(n)l - r,(m.n) = rx.,(m-n) = ry(,c) (1-4)

with t being an integer value. The filter output may be expressed as the convolution sum

,J (1-5)
y(k) = • w,x(k-m+ 1)

We now assume for the following derivation that there is some desired reference

signal, d(k), available which represents the desired system output. Then the residual or error

signal E(k) is defined as

E(k) = d(k) -- y(k) (1-6)

We desire to find the optimal values of the filter coefficients Wi which minimize this error

signal in some statistical sense. In Wiener filter theory [191 the performance function that

is used to optimize the filter coefficients is the mean-square value of the error signal.

The mean-square value of equation (1-6) is represented as

E[i 2(k)l = E[d2(k)J - 2 E[d(k)y(k)l + Eb,2(k)] (1-7)

and through the substitution of equation (1-5) into equation (1-7) we may write

-'.E J " (1-8)E[c2(k)] =E[d 2(k)] - 2 . wp, iE[d(k)x(k-m+I)J + •.•Wm w. EI~r(k-m~l)x(&-n+1)]

m~I rn-I ,fIl

"6



We now assume that the medium through which the signal propagates to reach the sensor

is linear and time-invariant. Then the desired signal component s(k) of the observation data

x(k) is related through a linear time-invariant transformation to the desired reference signal

d(k). Furthermore, we then assume that x(k) and d(k) are jointly stationary. This means

that the expression in equation (1-8) is the sum of the mean-squared value of the desired

response, a function of the cross-correlation of the desired response with the observation

signal and a function of the correlation of the received observation signal. Thus, equation

(1-8) may be written as

J . . (1-9)
E[E2(k)i = Etd 2 (k)1 - 2 1 Wm rxd(m-1) + . Wm wn rx(n-m)

m=1 m=i n=l

where the cross-correlation and input correlation are, respectively

rxd(m-l) - E[d(k) x(k-m+ 1)] (1-10)

rxx(n-m) a E[x(k-m+ 1) x(k-n+ 1)] (1-11)

It is convenient to now change notation from scalar representation to matrix form, and define

the observation vector and weight vector as

Fx(k) wi(k)] (1-12)

x*-1 W 2k) k
X(k) W(k) •

x.(-J+l)j wi(k)J

where we have explicitly shown the time-dependency of the filter coefficients. Suppressing

the matrix time-varying notation and recognizing from equation (1-5) that the output may

be expressed as y = WTX, equation (1-9) is equivalent to

E[E2(k)] = E[d 2(k)] - 2 RýW + W TRW (1-13)

7



where the cross-correlation vector Rxd and the correlation matrix R.,, are formed in a manner

analogous to the scalar case in equations (1-10) and (1-11):

d(k)x(k) rxd(O) (1-14)

RdEd(k)x(k,-J 1)] WOd-)

Ax(k) x(k)x(k-1) . . . x(k)x(k-J+-) (1-15)
x(k-1)x(k) x2(k-1) . . . x(k-1)x(k-J+1)

Rx, E

x(k-J+l)x(k) x(k-J+1)x(k-1) . . . x2(k-J+1)

r=(0) rx,(- 1) . . . r,,(l-j)]
rxx(1) rx.(0) rx,(2-J).

rx(J-l) ri(J-2) . . .

From equation (1-13) we can see that the mean-square error is quadratic in terms of the

weight vector. This dependency results in a bowl-shaped performance surface. This surface

must be concave upward since a negative mean-square error is not physically realizable.

The objective is to design the filter such that we operate on the bottom of this performance

surface. Since the surface is quadratic, we seek the sole global extreme value.

The gradient of the performance suriace can be obtained by differentiating equation

11-13)

Mw = 2RXW - 2R.,d

Setting this vector equal to zero to find the extremum yields

6 6



R,=W= Rxd (i-17)

and we find the optimal weight vector is

1Wl, 1 =1 RlRxa (1-18)

which is the Wiener-Hopf equation in matrix form. Examining equation (1-17) in scalar

form, the optimal weight values are given by the solution to the equation

.J (1-19)
Swopt. rx.,(m-n) = rxd(n-l, n=l2..

m=!

A tapped-delay-line filter whose impulse response is defined by equation (1-18) or (1-19)

is said to be optimal in a mean-square sense. The filter output realized by Wop0 is denoted y),,

and is the best estimate (in a mean-square sense) of the desired response given the

observation input. This may be expressed as

1 (1-20)
yopt(k) = a(kk,k- 1 ..... ,k-J+ 1) = wop x(k-m+l)

m=1

Therefore, using (1-10) and (I-11), equation (1-19) can be written as

.J (1-21)
Wopt. Efx(k-m+l)x(k-n+l)J = E[d(k)x(k-n+l)], n=1,2,...J

m=1

This is equivalent to the statement

.' (1-22)
E[(d(k)-X, wopt. x(k-m+l))x(k-n+l)] = 0, n=1,2,..J

m=I

and finally, using (1-20)

E[(d(k) - yop(k))x(k-n+l)] = E[Eop(k)x(k-n+1)] = 0, n=1,2,..J (1-23)

where eop, is defLied as

=optk) d(k) - yopt(k) (1-24)

9
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d(k)

d(k)-ypt(k)

Yopto(k)

Figure 4 Orthogonality Condition

Two important results now appear from this derivation. First, equation (1-23) states that the

error signal and a:,y of the observation signals are orthogonal in the optimal filter. Second,

the error signal eq,, and the output yopt are orthogonal since

J t(1-25)
E[eopi(k)yop(k)] = E[Eop(k), woptx(k-m+1)] = Wopt,. E[Eopj(k)x(k-n+1)] = 0

in- m=1

This condition, depicted in figure 4, ensures that the error signal vector is minimum.

C. The Multichannel Array Sensor

We now extend the results of the previous section to the multichannel case of interest.

The ideband multichannel model is depicted in figure 5 for an array composed of K sensor

eleme• ts and J taps per element. It was mentioned in section I.B that signals whose spectrum

can no be adequately characterized by a single frequency must be processed by a filter which

is capable of realizing a broadband frequency response. If the TDL filter tap spacing is

sufficiently close and the number of taps is large, then the filter will approximate an ideal

10
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Rgure 5 Wideband Multichannel Array

filter which exhibits exact control of gain and phase at each frequency of interest. The

sampling theorem [49] may be used to define the filter bandwidth. Consider a continuous

input signal which is sampled by one TDL filter. The sample sequence defined by the signals

appearing at the TDL taps uniquely characterize the corresponding waveform from which

it was generated provided that the continuous signal is bandlimited with its highest frequency

component fmax less than or equal to one-half the sample frequency corresponding to the

time delay A, orfm. < 1/2 A. The total bandwidth of a bandlimited signal is 2fm, so that

a TDL can uniquely characterize any continuous signal having a bandwidth less than or

equal to 1/A Hz; the signal bandwidth of the TDL filter.

The received observation data for the array in figure 5 is the sum of the directional

signals impinging upon the array and the thermal noise present on each element. The signals

are assumed to have been produced by sources in the far field which propagate through the

11
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medium surrounding the sensor. We now define the KJ-dimensional vectors X(k) and

W(k) as

xi(k) W1 (1-26)
X2(k) [ Xt(k) W2

Xt(k-A)X(k)= W(k)=

X,(k-(J-1)A)-
xK,(k) wxj

where X(k-IA) for I = 0,1,..J-1 is the K-dimensional vector of the observation signals

present at the column of weights following the I-th delay. The signals are assumed to be

plane waves, so that if we let u representing the directional signal unit vector, r be the sensor

coordinate vector and v denote the propagation velocity, then the intersensor delay may be

written as

u ur (1-27)
V

where the (.) operator is the standard vector inner product. Assuming that the reference

element is the top sensor of figure 5, then we may express the K dimensional vector of

directional signals St(k) as

sl(k) sl(k) (1-28)
s2(k) sj(k-'ci)

St~k)fi .

SKMJ: si(k-(K-1) TO)

For the K-dimensional vector of array observation signals Xt(k) the correlation

matrix "C() is of dimension K x K and is given by

•x(C) = E[XKk)XgT(k-T)] (1-29)

12
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For the KJ-dimensional vector of all observation signals X(k) the correlation matrix is of

dimension KJ x KJ, and is given by

R.(T) = E[X(k)X T(k-T)l (1-30)

which may be written as

-xx(T) ýt "•(r+(J-1)A) (1-31)

We assume that the signal and noise components of the observation data are independent.

Then

Rx(r) = Rgs(T) + Rnn(r) (1-32)

where Rss(T) and Rnn(t) are the KJ x KJ dimensional correlation matrices of the received

desired signal component and noise component, respectively, of the observation data:

R13(t) = EjS(k)Sr(k-t)] (1-33)

Rnn(r) = E[N(k)N T(k--r)] (1-34)

At a zero time shift, it is well known [ 11,20,331 that fo6 the case of interest RXX and Rnn are

positive definite matrices and Rss is generally at least positive semi-definite. For the

remainder of this research, any second moment not explicitly containing a time delay

argument will be meant to denote the second moment at zero time delay.

The optimal weight vector in the minimum mean-square error sense for the wideband

multichannel array of figure 5 is given by the Wiener-Hopf equation

WoPt = R~x RR (1-35)

13
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where Rxx is now of dimension KJ x KJ as shown in equation (1-31) and Rxd is a KJ x 1

vector formed in a manner analogous to equation (1-14), but using the vector X(k) given in

equation (1-26). This is the same solution as that of Widrow [20, equation 2.171.

D. The LMS Algorithm

The requirement which exists for the array processor is to solve the Wiener-Hopf

equation for the optimal weight vector. This solution requires knowledge of both RXX and

Rxd. In the problems of interest, the correlation matrix Rxx is unknown while, in general,

the cross-correlation vector Rxd may not be available. One method of obtaining the solution

would be the direct estimation of these values followed by their substitution into the

Wiener-Hopf equation. Monzingo and Miller [34] describe the drawbacks of this approach.

In summary: potentially serious computational problems arise in computing and inverting

Rxx; the number of measurements and computations needed to accurately estimate the

elements of Rxx and Rxd is large and requires repetition upon change of the input signal

statistics; and the implementation of a direct solution requires highly accurate estimates and

results in an open loop control.

Another method of solving the Wiener-Hopf equation is to solve for the optimal

weight vector iteratively through a gradient search procedure. The LMS algorithm [23] is-

one of the family of gradient search techniques for descending towards the performance

surface minimum. Not having a priori knowledge of Wo,1 , we begin at some arbitrary

weight value W(0) and estimate the gradient at this point. We choose the next weight value

to be the value of the current weight plus an increment preportional to the negative slope

estimated. This procedure leads to the iterative procedure

14
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W(k+1) W(k) + 9i( -Slw(k)) (1-36)

where ftw(k) is the estimate of the gradient at time k and ga is the step size of the incremental

walk to the bottom of the performance bowl. It will soon be seen thnt g also controls the

stability and the rate of convergence of the algorithm.

The key to the LMS algorithm is that it views z2 (k) to be an estimate of the

mean-square error E[ 2(k)J. Thus, the gradient estimate is given by

• ^ _ ( ) W r(k)X (k)] (1-37)
2(k) 2lE(k) - = -2E(k)X(k)

Mwtk) = aW(k) W(k) = (W(k)

yielding the LMS algorithm

W(k+1) =W(k) + 2 pE(k)X(k) (1-38)

The LMS algorithm is now demonstrated through a simple narrowband scalar

example motivated by Widrow [20]. The purpose of this example is to provide a graphical

understanding of the gradient search technique used in the LMS algorithm and to examine

the effects of noise in the development. Consider a tapped-delay-line filter with one delay

and two taps (order J=2). The input signal is a sinusoid given by s(k) = sin(-2--) and the

desired signal is d(k) = 2 cos(-). The observation data x(k) was then formed in both the

case where n(k)--0 and for n(k) being a zero-mean gaussian random variable with power

P. = 0.01. The correlation matrix and the cross-correlation vector were computed from

equations (1-14) and (1-15). The weight vector was found from (1-18), and the performance

surface given by (1-13) was then plotted as shown in figure 6. The LMS algorithm was then

executed through 500 iterations with a step size g = 0.05 and an initial condition of

W(0) = 0. The contour plot in figures 7 and 8 depict the noise free and additive noise

/ i
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performance surface searches, respectively. Figures 9 and 10 show the weight vector

transients. Figures 11 and 12 present plots of the estimated mean-square error, termed

'learning curves' by Widrow. Figures 13 and 14 show the estimation error, a measure of

the convergence of the adaptive algorithm, for the no noise and noisy cases, respectively.

The reduction of the area under the learning curve and the reduction of estimation error are

the two key indicators of the dynamic response or transient behavior of the adaptive filter.

The convergence of the LMS algorithm to the optimal weight vector solution is now

considered. The derivation in this section follows that of Widrow [20]. As previously

mentioned, the LMS algorithm utilizes the square error a asi estimate of the mean-square

error. From equation (1-37) we see that this leads to an unbiased estimate when the weight

vector is held constant.

Ef4 ,•f(k)l = -2E[(d(k) - y(k))X(k)] = W- Rd) Mwk) (1-39)

0
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-3

-3 -2 -

Figure 6 Performance Surface
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Since the weight vector is not constant but changes with each iteration, we now examine the

dynamic weight convergence. It is assumed in the following development that successive

observation data vectors are independent, which allows the weight vector to be treated as

though it was independent of the observation data process. It is noted that while this may

be unnecessary, it will be used to simplify the following derivation. Then the expected value

of equation (1-38) yields

E[W(k+1)] = E[W(k)] +2g(Rgd - RE[W(k)]) (1-40)

Rearranging equation (1- 18) or (1-35) to yield Rd = R.,Wop, we find

E[W(k+l)] = (I- 2p.R,,.,E[W(k)] + 2R,,.RWopt (141)

Proceeding with the derivation at hand, we define the weight error vector to be the translation

vector T

T(k) = W(k) - Wopt (1-42)

In order to diagonalize (I - 2pR.,R,), the coefficient matrix of E[W(k)] in (1-41), we define

the unitary matrix Q which performs a rotation upon T (introducing the new vector V) and

the similarity operation upon the correlation matrix

"T=QV (1-43)

R- = Q A QT (1-44)

where A is a square diagonal matrix whose element on the I-th row is the I-th eigenvalue of

the correlation matrix. The I-th column of Q is the corresponding eigenvector. Using the

Wiener-Hopf equation and substituting (1-42) into (1-41), the weight vector error equation

becomes

E[T(k+ l) = (I- 2iR.,)E[T(k)] (1-45)
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where the simplification falls out of the algebra upon the expansion. Utilizing our

transformations defined in (1-43) and (1-44), we may express this as

E[V(k+ 1)] = 9Q '1 Q - 2gtQ -1RxxQ ý[V(k)] = (I -21iA)E[V(k)] (1 46)

Finally, through the iteration of (1-46), we find the solution
E[V(k)] --(I - 2A )V(0) (1-47)

The weight convergence question is now answered by considering whether the error vector

W(k) - Wo,, converges to zero. Mathematically, this is equivalent to

lim(l-2A)A =0 (1-48)

or, since both matrices inside the parenthesis are diagonal,

lkn(l - 2 g LX) = 0 (1-49)
k --

where - denotes the i-th eigenvalue of the observation correlation matrix. Thus, for

convergence, the step size p must be chosen such that

0<A< 1 (1-50)

where X. is the largest eigenvalue of R,.. The translation vector V(k) thus obeys a

trajectory which is the sum of n modes, where the correlation matrix is of dimension n x n,

and the i-th mode ik proportional to (1 - 2 gt .i) . The speed of convergence is governed by

pI. If the step size is too large for equation (1-50) to be satisfied, then one or more modes

of the translation vector will be larger than unity in magnitude and the error will increase in

time. For a fixed step size, the speed of convergence is dominated by the slowest mode.

The eigenvalue spread of the correlation matrix (the ratio of largest to smallest eigenvalues

or the condition number of the matrix) is therefore an indicator of the convergence speed of

22
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the LMS algorithm. The larger that the eigenvalue spread of the observation correlation

matrix is, the slower the convergence of the algorithm.

The above results can be used to better understand figures 7 through 14. Comparing

figures 7 and 8, it is apparent that the noisy gradient estimate does not immediately approach

the minimum mean-square error solution, but walks around the bottom of the bowl. This

causes the weight jitter seen in comparing the noisy weight vector transients of figure 9 to

those of figure 10. From equation (1-49), we see that the learning curves in figures 11 and

12 should decay according to geometric ratios of the form (1 - 2 gt Xi), yielding a time

constant for the i-th mode of

1 (1-51)

where we have used the convention of Widrow that the time constant of the mean-square

error learning curve is one-half that of the geometric decay [ 14]. The noisy estimate of the

mean-square error causes the jitter shown in figure 12. The estimation error in figures 13

and 14 depict the amount of time it takes for the adaptive filter to learn the amplitude

difference and phase shift between the desired signal and the observed signal and, in figure

14, the error is at first sinusoidal and then becomes increasingly random.

The requirements of the LMS algorithm are evident through the examination of

equations (1-39) and (1-40) and the fact that the LMS approximation is accomplished by

estimating the unknown average values with the available present values; in essence

dropping the expectation operator. Specifically, a desired signal is required and the

correlation matrices are approximated by

A.(k) = X(k)X (k) (1-52)

A•d(k) = X(k)d(k) (1-53)
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The desired signal requirement has been addressed by Widrow, who derived training

schemes to provide this signal [1717, and Compton, who demonstrated that the algorithm can

be successfully applied to communications when the desired information carrying signal is

unknown but some of the characteristics of it are available [ 18].

Griffiths modified the LMS algcrithm through recognizing that a priori knowledge

of the desired signal correlation function, its direction of arrival and the array geometry allow

the received cross correlation vector to be defined [33]. This relieves the algorithm of the

desired signal requirement and allows the vector Rxd to be formed off-line. The only

real-time estimate that must be formed in Griffiths' LMS scheme is the correlation matrix

Rxx.

The principal algorithm of interest in this research is a linearly constrained LMS

algorithm. This algorithm, presented in the next chapter, will be seen to utilize a directional

constraint in order to completely relieve any requirement of a desired signal or its statistical

characterization. In fact, the desired signal d(k) is taken to be identically zero. 'The

correlation matrix Rxx, as with Griffiths' algorithm, is the only required real-time estimate

and the necessary a priori information is simply the direction of arrival of the desired signal.
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II. CONSTRAINED PROCESSORS WITH TAPPED-DELAY-LINE STRUCTURE

The first constrained adaptive array to be derived is termed the "direct form". A

second form, which is a partitioned constrained processor, will then be developed from the

direct form. This processor and the direct form will be shown to have identical performance.

A third form, referred to as the "Generalized Sidelobe Canceller" or GSC will be shown to

be a partitioned processor which utilizes a methodology to separate the constraint from the

adaptive beamformer in a manner which results in an unconstrained adaptation.

A. Direct Form Processor

The derivation in this section follows that of Frost [111. The geometrical

interpretation and portions of the algorithm development h)ve been expanded. A direct

form constrained processor with K sensors and J taps per sensor is displayed in figure 15.

We assume that the array has been electronically pre-steered so as to be parallel to the desired

signal's wavefront through the use of the shown steering time delays. This is referred to as

a signal aligned array.

The received signal X(t) is a composite of the desired signal S(t) and noise N(t). The

noise itself may be a composite of passive and active noises. An example of passive noises

would be the thermal noise present on each element, while an example of active noises might

be hostile jammers. The signals are sampled and processed so that the received signal at the

k-th sample may be written as:

X(k)=S(k)+N(k) (2-1)
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Figure 15 Direct Form Tapped-Delay-Line Processor

The signals in this derivation are assumed to be realizations of zero mean stochastic

processes with unknown second order statistics. The notadon that will be used to describe

the signal correlation matrices is:

R. -.E [X(k )XT T( k)] (2-2)

R. E[N ( k ) NT ( k )

R-E [S (k) ST ( k) ]

The desired signal S(k) is assumed to be uncorrelated with the noise N(k).

The signal X(k) impinges on the sensor array and arrives at each element at a different

time determined by the array spacing and the composite signals direction of arrival. Since
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the array is assumed signal aligned, the look direction waveforms S(k) are the same down

each column of the array.

The KJ dimensional stacked vectors of look direction waveforms S (k), noises

N (k) and weights WDF (k) may be written as:

s(k) (2-3)
s(k) ni (k) WDFt(k)

n2 (k) WDF 2 (k)

s(k)
s(k-A)

s(k-A)

S(k)= s(k-A) ,w ( )=

s(k-(J-I)A)
s(k-(J- 1 )A)

nfKJ(k) WDFr,(k)

s(k-(J-l )A)

where A is th2 delay time introduced between successive taps in the array. The subscript

DF will be suppressed for the remainder of section A, and will only be used in subsequent

sections to clarify the array form being referenced as needed.

1) The Adaptive Algorithm: The algorithm for adapting the direct form weights

must be capable of maintaining a chosen frequency response in the look direction while

minimizing the output power in other directions; power which is due to undesirable noises.

As previously shown, the desired signal produces identical components on each column of

taps while the noise arriving from other directions will not in general produce equal
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components at the tap inputs. The received composite signal at each tap is multiplied by a

corresponding weight and summed to produced the array output. It is therefore evident that

under these conditions the multichannel processor appears as a single channel

tapped-delay-line with respect to the desired signal. This equivalent single channel filter

has weights which are equal to the sum of the weights in the corresponding vertical column

of the multichannel processor. This is shown in figure 16 for a three tap three channel array.

Through constraining the sums of the weights in each of the J vertical columns to have some

vailuefj, we have in fact fixed the frequency response of the processor in the look direction.

The cost of demanding this response is the loss of J degrees of freedom. Thus, only KJ-J

degrees of freedom in choosing the weight values may be used to minimize the total output

power from the array processor. Minimization of the total array output power subject to our

s(k) s(k-,N s(k-2,6

-W3

Sfi=Wl+W2+W3
f=W4+WS+W6
f3=W7+WB+W9

Figure 16 Equiva!ent Look Direction Processor
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constraint is equivalent to minimizing all non-look direction noise3 as long as the desired

signal is uncorrelated with the noise.

In terms of the signal and weight vectors, the look direction constraint may be

expressed as

C TW = F (2-4)

where the KJxJ matrix C and the J vector F

1k (2-5)

1k0 1] HC= F=-0 l
effectively define the sums of the weights on each column of taps.

The output of the processor at the k-th sample is

y(k)=WT(k) X(k) (2-6)

and the expected value of the array output power is

E[y 2 (k) ]=WR W (2-7)

The problem at hand is to find the optimum weight vector W that will minimize the array

output power (a scalar performance index)

L=1 WTR W (2-8)

subject to the constraint

g=CTW- F=o (2-9)

The constrained optimization problem can be reduced to an unconstrained problem through

the use of Lagrange multipliers [ 101. The Lagrangian for this system is

lH= L+ g =jWrR.XW +X;T(CrTW-F (2-10)
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where X c R is an undetermined vector Lagrange multiplier 'he necessary conditions "or

optimality are

Hw =0 and CTW=F (2-11)

Taking the gradient of the Lagrangian

Hw=RxxW+Ck. = 0 (2-12)

and solving for the optimal weight vector yields

WoPt=-Rxi C X (2-13)

Since Wopt must satisfy uie constraint

_CeTRLI C X= F (2-14)

we find that the optimal value of the Lagrange multiplier is

•.- [C Rx. C 1-1F (2-15)

and the optimal weight vector may be written as

Wopt =RJ C [CT Rj C ]- 1 F (2-16)

The constrained least squares estimate of the look direction signal is given by

y 0pt (k) = W 0, X (k) (2-17)

If we now assume for the time being that Rxx is known, we may derive the

deterministic constrained least mean square (CLMS) algorithm. The initial weight vector

is to be initialized on the constraint plane and subsequently moved in the direction of the

negative gradient at each iteration. The adaptive step size used to walk down the

performance surface is proportional to the magnitude of the gradient. The weight state and

costate equations-are given by

W(k + I )W (k) - Hw -W (k) - tR.,,W(k) +C X.(k)] (2-18)
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).(k)=:-1 (C TC )_I (F-C T W(k))-(C TC )-IC TR,, W(k) (2-19)

The term F - C T W ( k ) in the costate equation permits the algorithm to make corrections

foi small deviations on the constraint, preventing large errors due to the accumulation of

slight trajectory flaws. Substituting the weight costate equation into the weight state

equation yields the CLMS algorithm

W(k+I)=P [W(k)- iRxxW(k) ]+Q (2-20)

where

P=IKr-C (CTC )_ICT (2-21)

and

QL = C (t CTC )-I F (2-22)

This deterministic solution requires the a priori knowledge of the signal correlation matrix

Rxx. The stochastic CLMS algorithm is obtained by estimating the correlation matrix at

each iteration. A readily available estimate is formed at the k-th iteration by
A Tr2-3R.=X(k)X (k) (2-23)

P where we note that other estimates of the correlation matrix may have been used in place of

equation (2-23). This form of the estimate, which is made up of the outer product of the

available tap voltaze vector, is ihe simplest, and is consistent with the LMS algorithm.

Thus, from equations (2-20) and (2-23), we find that the weight update equation may now

be writ~en

W(k+ 1)=P [W(k)-gy(k)X(k) ]+Q (2-24)

For later comparison, a signal flow block diagram is presented in figure 17. Note

that the pre-steering filters for the signal aligned array are not shown in block diagrams. For
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X(k) y(k)
W(k)

CLMS

Figure 17 Direct Form Block Diagram

the remainder of this research we will be solely concerned with linearly constrained

Minimum Variance Distortionless Response (MVDR) adaptive array sensors. In terms of

the direct form processor, this may be realized by enforcing the condition that the vector

F be composed of one reference element equal to unity and the remaining elements equal

to zero. All of the results presented, however, will be general in nature and not reliant upon

this emphasis unless explicitly stated.

2) Geometrical Interpretation: The geometrical analysis of the CLMS algorithm

requires a number of definitions and propositions. These are presented in appendix I. The

CLMS algorithm will now be shown to have a very simple representation. In addition, the

relationship between the CLMS algorithm and the standard LMS algorithm will become

evident.

We now consider the geometrical interpretation of the CLMS algorithm. Consider

the diagram shown in figure 18. The subspace I is that subspace which satisfies the

homogeneous form of the constraint equation. Thus, . is the nullspace of the matrix C

defined in equation (2-5). This subspace will be termed the homogeneous constraint
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fl={W:C W=F)

r. ={W:C' W=O}

Figure 18 Geometrical View of CLMS Algorithm

subspace. The constraint equation, equation (2-4), ensures that the vector Wop, terminates

on the (KJ-J) dimensional constraint surface fQ. The shortest weight vector from the origin

to the constraint surface Q is found by minimizing the norm of the weight vector I WI 2

subject to CTW = F. The method of Lagrange multipliers is utilized, and the Lagrangian is

,I = WW + XT( CTWF (2-25)
2

The necessary conditions fo, iptimality are

Hw =- = and Cw =F (2-26)
a W

Taking the gradient of the Lagrangian and setting it equal to zero yields

WoP, = -C;X (2-27)

Since W,,, must satisfy the constraint, we find -CTC X = F and the weight vector costate

equation is

X= -(CT C)-'F (2-28)
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Substituting the weight costate equation into the equation for Wp, yields the vector which

we seek:

14,1,t~ = C( Cr C) I F (2-29)

This vector is identical to the vector Q in the CLMS algorithm, equation (2-22).

It can easily he verified that Q is orthogonal to any vector z in 2: by examining the

inner product

QT.=FT ( CrcF)-'Crz (2-30)

and noting that Cr' = 0 by definition.

Consider the projection operation (defined in definition A 1-6 and characterized by

propositions AI-2 and AI-3 of appendix I). A vector W may be decomposed as the sum

of one vector in I and one vector from the orthogonal space spanned by the J linearly

independent columns of the constraint matrix C. termed the constraint subspace 'V. The

projection operator of interest acts as an identity operator on components within I and as

an annihilator operator on components in IP.

The matrix P in equation (2-21) can he seen to be a projection operator onto I by

noting that

C r ( lW i = C rI C ( CrC)- tc] W = o (2-31)

and therefore PW e X. We also note that

SI- P) W= W- PIW =C( CrC -CrW IF (2-32)

We now rewrite the CLMS algorithm (20) for convenience:

W(k. I )P I W -(k)-py(k)X(k) I+Q (2-33)

The term inside the bracket is the standard LMS algorithm 1231 with the desired signal

d(k)=4). and the expression i(k)X (k) is an estimate of the unconstrained negative gradient
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at time k. The CLMS algorithm thus computes the LMS estimate and projects the resulting

vector onto the subspace I. The next weight vector W (k+1) is then formed by translating

the projected vector onto the constraint surface Q through the vector addition with Q. This

is depicted in figure 18.

3) Convergence of the CLMS algorithm: The weight vector W (k) in the CLMS

algorithm is a function of W (0) and the sequence {X (k)}. Throughout this development we

have assumed that the observation vectors X (k) are independent. We note that Frost [11]

has pointed out that this may be unnecessary and Daniell [21] has shown e-convergence

based on only asymptotic independence. Utilizing this assumption, X (k) is independent of

W (k) and the expected value of the CLMS algorithm may be written as

E[W(k+l)] =P( EIW(k)] -g.Rx,.E[W(k)]) +Q (2-34)

From proposition A1-2 of appendix I, we may express Q as

Q- =(V- P) wots (2-35)

Let tp(k+l) denote the difference between the mean adaptive weight vector at time k+1 and

the optimal weight vector:

9(k+ 1) = El W (k+ l) -Wo (2-36)

_Proposition II-1 Let W,.p and Wo1p, be elements of Ql with the difference vector

p W=-W,, - Wop,. Then p r I and P•p = (p.

Proof of Proposition 11-1: Since W,,, Wp,, e Q, then

Cip = CT Wexp - CTWopt, = F - F 0 (2-37)

and V e X. By proposition AI-2 and definition A1-6 of appendix I, if p e Y. then P = (p.

This may be shown algebraically:
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P9= I 1- C ( CTC fICT I9P4 - 0.

With the results from proposition 11-1, we may rewrite the iterative difference process

as

ip(k+1) P (E[ W(k)] - UAxx El W(k)J + [I- PIWop, - Wopi (2-38)

=P9(k)-uPR,.x9(k) = [I-uPRxxP]9(k) = [I-uPRxxPlk+1 OP(0) (2-39)

where we have used the fact that, from equations (2-16) and (2-21), PR,,-Wop, =0.

The matrix P R.P is the correlation matrix of the projected observations. It is the

non-zero eigenvalues of this matrix which determine both the convergence rate of the CLMS

algorithm and the performance of its steady-state with respect to the optimum. This

projected correlation matrix P R.P r= R"" and is symmetric. Hence, it is diagonalizable

into n orthogonal eigenvectors.

Proposition 11-2e m of the n eigenvectors of the matrix P R,,' are outside of the

* (I subspace I and have zero eigenvalues. The remaining n-rn eigenvectors have non-zero

eigenvalues and lie within 1.

Proof of Proposition 11-2: The matrices P =I - C C CC )CT and C have full rank.

X. Therefore, C has m columns of linearly independent vectors. It is evident that the product

CTP R,,P = 0since P(Rx,,P )e 1. Thus, mncolumns of C are eigenvectors of P R,,Pwith

zero eigenvalues.

The columns of C are orthogonal to 1. Therefore, the remaining (n-rn) eigenvectors

must be in M. From proposition 11-2, if (p e I then P (p = p. Thus, if vi is an eigenvector of

P RxJ'in1, then

vi PRxxzP ivi vTR vi >0 (2-40)
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furthermore, if ai is an eigenvalue corresponding to v, E I, then PR.,,Pvi = , v, and

viPRy.•Pvi = ai vTvi = Oi (2-41)

We now consider the relationship between the eigenvalues of the constrained system

and those of the unconstrained correlation matrix. We continue the notation used to denote

the (n-m) eigenvalues of P R.,,P as a, and will denote the n non-zero eigenvalues of R,, as

Xi. The well known result, generally referred to as Rayleigh's Theorem'[22] states:

Xmin!5 <min n O'i! Uamax 5 %max (2-42)

The difference vector (p(O), defined in the previous section, lies entirely within I and

may therefore be considered as a linear combination of the eigenvectors v• which correspond

to the (n-m) non-trivial eigenvalues of P Rr.,P. Thus,

k+1 k+14p(k+l1) = 1 - gPR .xxP Ik+ Yj = [ 1-goi] ] iv, (2-43)

The convergence along any eigenvector v, is then geometric with ratio I - paT] and

associated time constant

-1 (2-44)
In(l-iti)

-1 1
if pai << 1, then -> , and it becomes evident that if p is chosen so that

In(1-pa1c) Pafi

1 (2-45)
Umax

then the norm of the difference vector is bounded between two monotonically decreasing

gtwmetric progressions

l - Om l I p(O)i 51 p(k+l)l 5 11- t g cy,,ýl I (0)1 (2-46)
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Therefore, if the initial difference is finite, then E[ W ] converges to the optimum with the

time constants for the georiietric ratio given in equation (2-44) above. That is to say, the

weight vector converges in the sense that

limI E[ W(k) - Wopt 11 = 0 (247)

The operation of the CLMS algorithrr in a quasi-stationary environment is now

considered. The algorithm step size pt is assumed to remain constant during this

development. The weight vector adaptation results in a non-zero variance about its optimal

value. This adds an additional cost, termed 'misadjustment" by Widrow [141. This

dimensionless quantity, denoted M(p), is a measure of how closely the algorithm approaches

the optimal performance.

E r(WT 2 ( T 2 (248)
M(A)= MI2k=O E [ -E[ X 0kk)

Frost [11] has shown that the steady-state misadjustment may be bounded by

S-.[ trace (PR=P) + 2ami]2 - R trace (PR,,xP) + 2Oma(

Thus, M(p) can be made arbitrarily close to zero by choosing a small step size. The

fundamental trade off is cost performance at the expense of increased convergence time.

B. Partitioned Form Constrained Processor

The algorithm for the direct form TDL structure clearly shows two discernible

events taking place. The first event is the adaptive process which determines the LMS

solution for the adaptivity. The second event is the enforcement of the constraint each

iteration, which is both deterministic and decided upon before implementation. This
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Figure 19 Partitioned CLMS Processor

algorithm partitioning was also depicted in the preceding geometrical interpretation and

figure 18.

Noting this separation in the algorithm, it would seem reasonable that one could

change the form of the processor in order to partition the two aforementioned events. This

is the approach that was taken by Griffiths [15] and now explained. The adaptive section

of the processor would operate in the subspace 1 and the non-adaptive section would perform

the translation to the subspace Ql, satisfying the constraint. Thus, this structure separates

the conventional beamformer from the adaptive processor. As shown in figure 19, the

partitioned processor described above is implemented so that

TW = F (2-50)
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and

CrwPF=0 (2-51)

where WPF represents the adaptive weights in a manner analogous to section II.A. I and

Wc is a conventional non-adaptive beamforming filter. Equation (2-51) ensures that the

desired signal is eliminated from the adaptive processor input. Equations (2-50) and (2-51)

can be seen to satisfy equation (2-4) by considering the global partitioned weight vector

[W,] (2-52)

[WPFJ

and noting that

CTW = F1 (2-53)

The partitioned processor shown in figure 19 thus utilizes the CLMS algorithm:

m T Wrr R WpF (2-54)
Wpr

subject to the constraint

CTWPF= 0 (2-55)

The optimal adaptive weight vector WpFop, for the partitioned processor is now derived.

The output of the processor is

y= (W- WTr)A' (2-56)

and the Lagrangian for this system is

H=.(W-I _ WTF)R. (Wr_ WrF)+ •T( cT WPF ) (2-57)

The necessary conditions for optimality are

Hw aH 0 and C TWPF 0 (2-58)

aWPF - n
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Taking the gradient of the Lagrangian

Hwr =-Rz,(Wc-WPF +C= 0 (2-59)

and solving for the optimal weight vector yields

WPFo, = Wc-R.,' C X (2-60)

Since Wopt must satisfy the constraint
CT (WRx - C X )=0 (2-61)

we find that the optimal value of the Lagrange multiplier is

; T=[ CT RI IC I cTwc (2-62)

and the optimal weight vector may be written as

WPFo,, = Wc - R;iC [ CTR,.C ]-fC Wc (2-63)

which can be seen to be equivalent to equation (2-16) by considering (Wc - WPFopt) It is

apparent that the array transient response is unchanged from that of the direct form due to

the partitioned form's dependence upon the eigenvalues of the sameý matrix PRiXP. Since

the partitioned processor has the same transient behavior and the optimal weight vector for

the processor is equivalent to the direct form, the two processors have identical performance.

C. Generalized Sidelobe Cancler GSO

The GSC form was first introduced by Applebaum and Chapman [12] for

narrowband signals in a radar context. The derivation in this section will follow the

extensions made by Griffiths [13] for wideband signals. The iterative equation (2-24) may

be partitioned into a scalar nonadaptive equation and a matrix adaptive equation. To derive

this particular form, we will begin with the direct form processor CLMS algorithm, and

partition it in a manner which will utilize a matrix filter to ensure that the adaptive processor
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operates on the homogeneous constraint subspace 1. This means that the processor does

not require the constraint CTW = 0 for the adaptive section. In other words, the constrained

processor operates with an u adaptive algorithm.

We note that equation (2-24) can be written for the l-th column as

[-X fW (2-64)W(k+lI)= W(k)+giy(k)[_K (k- 1)t11_X(k 1)l1- K r(k) 11_fi] (I-6I

We proceed by defining a K-dimensional constraint vector Wc for the MVDR processor

such that

= (2-65)

and a (K-I) x J dimensional signal blocking matrix Ws composed of linearly independent

rowsr ( i) such that

rT(i) 1=0  i=1...K-1 (2-66)

Then we introduce the invertible transformation matrix T such that

T r [fT] (2-67)

where the KJ-J x KJ matrix *s and the KJ x 1 vector Oc are given by

W: 0 0 . . . 0 " (2-68)
0 W 0 . . .0 0
0ow o...0 0

o o 0 . . . o 0

and finally, from (2-65) and (2-66) we note

(2-69)
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Multiplying the stochastic CLMS algorithm by the transformation matrix T, using

equation (2-69), and defining

a (k) = cWDF (k) (2-70)

B (k) = - WDF (k) (2-71)

we find that equation (2-64) can be exprcssed as

[a(k +1 1I [a (k) 1 [Wx~')wT'X ~F (k) IJ] (72

_- [ +g±y(k) WDJ jj k
Substituting equations (2-65) and (2-4) into equation (2-72) yields 00 nonadaptive

scalar equation

a(k +1 )=a(k) (2-73)

and the adaptive matrix equation

B(k+ 1 )=B(k)+ gy(k)XX(k) (2-74)

Equation (2-74) is the standard unconstrained LMS algorithm and Xs is defined by

.t (k)=*,X(k) or X,(k)= W3X( k-IA) (2-75)

where Xt(k-lA) was defined in equation (1-26).

As long as the nonadaptive scalar weights a ( k ) satisfy

at ( k ) =f (2-76)

then equations (2-73) and (2-74) define the stochastic CLMS algorithm with the constraint

explicitly separated from the adaptive beamformer. This is the Generalized Sidelobe

Canceller (GSC) form of the CLMS array, and is shown in figure 20, where for the directional

constraint of interest R = K-1.

7The LMS algorithm in equation (2-74) is a direct function of the CLMS algorithm

weight vector in equations (2-24) and (2-64). In other words, equation (2-74) presents a
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Figure 20 GSC Form Tapped-Delay-Line Processor

method of representing the CLMS algorithm with respect to the GSC form. In general, the

GSC algorithm weights are not a function of the CLMS algorithm, but are updated by

equation (2-74) such that the Wi in figure 20 are not constrained

W(k) WDF I k) (2-77)

and the nonadaptive weights shown satisfy equation (2-76).

The question of interest is the behavior of the GSC form as a function of the signal

blocking matrix Ws and the unconstrained weight vector (Gsc (k) = W (k). It is shown in
appendix II that the optimal weight vector (VSCo,, is equivalent to the other two forms

considered when equations (2-65) and (2-66) are satisfied, ie:

4 'GSCopt = ",iR R. W ' *, R.*: = WpFo0 , WDP 0os (2-78)
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This leads to the conclusion that as long as the signal blocking matrix forces the adaptive

processor to function in the subspace Y (blocks the look-direction signal) and the

nonadaptive weights enforce the constraint, then the steady-state solution is equivalent

across all three processor forms. It should be noted that this equivalent steady-state response

is achieved through not only an unconstrained adaptation, but also with a reduced order

adaptive processor. For the directional constraint of interest, the processor need only operate

on the transformed observation vector , of dimension (KJ-J) x 1. The transient behavior

of the GSC form, however, may or may not be identical.

Thus, the GSC can provide filtering operations which are either identical or different

to those of the CLMS array depending on the structure of the signal blocking matrix Ws and

the constraint vector Wc . If the linearly independent rows of Ws satisfy equation (2-66),

are orthogonal

r. T(i)r(j)=0, i*j (2-79)

and Wc satisfies equation (2-65), then the stochastic CLMS processor is obtained, as detailed

in appendix IH and explained from a geometrical point of view below. Furthermore, if Ws

satisfies equation (2-66) but not equation (2-79) and/or Wc does not satisfy equation (2-65),

then a processor is formed which will have the same steady-state performance, but different

transient trajectories.

The fact that the GSC form reduces to the CLMS form if equation (2-79) is enforced

is evident by considering the geometrical interpretation of section II.A.2. With a fixed We,

it is clear that the orthogonality condition for the rows of Ws is equivalent to decomposing

the GSC such that

S= Q (2-80)
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*fGscC(k)=-P[ *Gsc(k)+ gy (k)X(k) ] (2-81)

where P and Q are defined in equations (2-21) and (2-22), and the geometrical relationship

was shown in figure 18. The vector *c = Q can not be changed in order to keep the desired

MVDR processor. Since Q spans T1, in our search for quicker transient behavior we are

restricted to examine relationships which are non-orthogonal combinations of Q with

Vs e L. The weight vector at each iteration must still be an element of f.

As an example, assume a linear array with K=J=4 and Wc satisfying equation (2-65).

Then if we choose a Ws, such that~it is composed of mutually orthogonal row vectors which

are binary Walsh functions [24]

-: (2-82)

then we obtain a processor identical to the CLMS direct form. By contrast, if we choose a

non-orthogonal Ws2 such that it forms the sum and difference of the adjacent channels

1~ -1 0 ] (2-83)WS2 0 1 -1

0 0 1 -
I

then we obtain the processor described by Applebaum and Chapman [12].

The capability of finding a Ws which implements a rectangular quadratic

transformation Rxs = 4's Rxx *Sf such that the resulting matrix has a smaller eigenvalue

spread than the original correlation matrix PRxxP is intriguing. This capability means that

the GSC adaptive processor may converge faster than the CLMS form. The quickest

convergence possible would be realized if the rectangular quadratic transformation

equalized the eigenvalues of the input correlation matrix. However, due to the form of

(Vs, given in equation (2-68), it is not in general possible to determine a Ws which satisfies
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the requirement of equation (2-66) and equalizes the eigenvalues of the resulting matrix

Rxs. The best that can be achieved is to find a signal blocking matrix Ws which causes the

smallest eigenvalue spread of Rxs. The dilemma is that even this requires unavailable a

priori information about the original correlation matrix itself. Thus, while one may

guarantee identical transient behavior for the GSC and the direct form processor, there is no

deterministic method available to ensure the capability of a better dynamic response.

The utility of the GSC form, however, lies in the fact that the matrix filter partitioning

permits the use of other adaptive structures to replace the tapped-delay-line unconstrained

processor and reduces both the dimensionality of the adaptive weight vector and the

algorithmic complexity. It is precisely these capabilities which the remainder of this

research will concentrate on, with the goal of reducing the adaptive processor convergence

time.

D Normalization of the Step Size Gain

The CLMS and the LMS algorithms used in the direct form and GSC form arrays,

respectively, utilize a constant step size gain denoted p. This gain is dependent upon the

input signal power as described in section II.A.3, where the CLMS misadjustment was

derived. This dependence is undesirable seeing as p remains constant while the signal power

changes over time. This undesirable dependency may also be seen by considering an

increase As in the input signal. For the LMS algorithm, this is equivalent to increasing the

gain from p to p(As)2; which is the same increase observed in the eigenvalues of the signal

correlation matrix. If the signal power grows too la:he the adaptation algorithm may become

unstable.

47



Mne method of soll ing the problem described above is to implement a time varying

,t'p ,t/e gain. [he use of tine-%am Ing step si/s for the IMS algorithm has been considered

hb man% authors for the narrow hand single channel TIL adaptive filter 150.51,52,531. The

dcelopment in this se .thw itfllot s the development in Honig and Messerschmitt1531 with

the utili/itiOn of different parameters and extensions to the multichannel wideband case of

imtc.rt. 1-M- step-.si/e should he normalifed to the input signal power at each iteration.

Uhus, it is desirable to change the CLM S and LMS algorithms in equations (2-24) and (2-74)

to the form

1,w, I&*I I i 1 IV m' (A) - ptk)v(k) X(k)] + L (2-84)

Wj'.w, (k- 41) -: IVI..ws (A-j + ga(k) y(k) X, i'k) (2-85)

%here pial) is the aforementioned time-vatying step size. The magnitude of the step size

each iteration \A, ill K- approximately the same on average if at each sample it is normalized

h-, an estimate of the input signal power. For the I-th TDL, this may he expressed as

a (2-86)
o, tk)

A •

Nh.re ," () is a measure of the po%%er content of the received signal at the I-th channel

during the -.th iteration and (A is a scalar.

One choice for forming the power estimate is through the use of a single pole

loow-pas, filter. This is equivalent to using an exponentially weighted time average of the

input signal power above each tap of the channel, and may be written as
S.... . ., ! 1 ' (2-97)

for the Irh channel. The selection of l such that 043<1 controls the handwidth of the filter

and the resulting poer averaging time. Let a = 1, then the selection of •3 such that -I
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yields

limE [ E [X r(k) X(k)] (2-88)

We now consider setting (x 1 - •. This is equivalent to letting

E[(k)i 1 (2-89)
E [(l(k)]

which is reasonable as long as (1 - 0) is small enough to smooth out the statistical

fluctuations in the step size so that pi(k) becomes virtually independent of the observation

data X(k). If the step size at k--O is initialized at pi (0) =XT(0) X(O)

of the step size will approximate the expected value of for all k. The time constant
x 2(k)

in equation (2-44) will become

N (2-90)

E[xT(k)X(k)] XX,
(I1 - P1) X.i N (I1 - 03) ;Li

which shows the proportionality to the ratio -X. Therefore, a change ir, lhe input signal

variance causes a much less dramatic change in the convergence speed and the

misadjustment is reduced.
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Figure 22 Optimal Frequency Rosponse

look-direction signal and noises are assumed to be statistically uncorrelated with the non

look-direction signals, explicitly ruling out multipath. The signal environment is described

in table 1 and figure 21. The power spectral density depicted in figure 21 is a plot of

normalized frequency versus power in dB.

The vector of look-direction filter coefficients F is designed to provide a

distortionless response. This desired response in combination with our directional constraint

yields the aforementioned linearly constrained minimum variance distortionless response

(MVDR) processor. The optimal weight vector given by equation (2-16) produces the

frequency response shown in figure 22. This figure is actually three steady state plots of

normalized frequency versus power gain superimposed upon one another. The first plot

depicts the distortionless look direction frequency response, while the second and third plots

are the frequency responses in the directions of jammer 1 and jammer 2, respectively.
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The ensemble characteristics with the known correlation matrix of the direct form

and GSC form TDL structure are now examined. This type of computer investigation is

termed an analysis model, as opposed to a simulation which will be addressed later. The

magnitude of the step size determines the speed of convergence and the steady state

mean-square error of the CLMS and LMS algorithms. The upper bound, given in equations

(2-45) and (1-50), require a priori knowledge of the data correlation matrix. A step size

which is near the upper bound may lead to overshoot with data fluctuations and the

mean-square error increases proportionally with the step size magnitude. A step size which

is too small will increase the amount of time required to convergence. For this example, the

magnitude of the step size is taken to be

1 (2-91)
10 trace(R)

where R is the relevant correlation matrix. It is noted that this step size is the value

recommended by Wid-ow [20, p. 1061.

Figure 23 shows the ensemble average weight transients resulting from iteratively

applying the CLMS algorithm in equation (2-20). Figure 24 depicts the ensemble mean

square error or learning curves. Since the LMS algorithm's desired reference signal d(k) is

equal to zero in the constrained algorithms, the mean-square error is equivalent to the

ensemble output power; that is, E[e21 = E[(d(k) - y(k)) 2] = E[y 2(k)]. The GSC form requires

the choice of signal blocking matrix be made for further analysis. The choice of Ws, defined

in equation (2-82) yields a performance identical to that of the direct form, and is therefore

not presented. Figures 25 and 26 present the ensemble weight transients and output power

for the signal blocking matrix Ws2 defined in equation (2-83). For this example, the
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eigenvalues of the observation correlation matrix R. range from 0.100 to 10.056. The

eigenvalue spread of the direct form quadratic matrix function PRXP is 75.447. The
*'

eigenvalue spread of the GSC quadratic matrix function s2RxA'] is 57.8019, depicting

the situation where the GSC performance will exceed that of the direct form.

The simulation model analyzes the actual behavior of the adaptive processor. This

is accomplished through generating all propagating signals and simulating the sensor noise

at each element. The signals impinge upon the array as they would in a true deployed system,

and the statistics are data driven. This differs from the analysis model, where simply an

investigation and iteration of equations given the correlation matrix is performed.

The simulation of the tapped-delay-line structure for both the direct form and CSC

form is now considered. The propagating signals are modeled as zero-mean stochastic

processes with Gaussian distributions. The signals are filtered to provide the spectral and

spatial characteristics described in table I and figure 21. The constant step size simulations

are based on an LMS gain as described in equation (2-91). The normalized step size

simulations are formulated as described in section D of this chapter.

The simulation executed one hui.dred adaptations over a one hundred independent

realizations of the input process. The same observation process at the se isor inputs were

used for each form to provide a meaningful comparison. The direct form constant step size

mean weight vector trajectories, entemble averaged output power and frequency response

evaluated at the mean value of WDF(lO1) are displayed for this realization in figures 27, 28

and 29. The analogous plots for the GSC are presented in figures 30,31 and 32.

The normalized step size simulations are presented for the same observation process

realization generated above. It is noted that the ensemble statistics are not available due to
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the algorithm's new dependency upon the data variance. Approximations to the ensemble

performance are made over one hundred adaptations of the observation process realizations.

The time-varying LMS algorithm begins with an initial condition of the input signal

variance, which must be large for fast convergence and subsequently decrease in magnitude

for minimum steady state mean-square error. In accordance with the earlier discussion on

convergence, too small of an initial variance estimate leads to a large initial step size and a

corresponding initial overshoot. A value of the initial variance estimate which yields similar

performance to that exhibited by the fixed step size of equation (2-91) ha3 been

experimentally determined to be
2 xT xI (2-92)

"io) trace(R)

where R is the relevant correlation matrix for the form under consideration.

The plots of weight vector dynamics, temporally avcraged learning curves and

frequency responses are displayed in figures 33, 34 and 35 for the direct form; figures 36,

37 and 38 for the GSC Ws2 form. The learning curves are roughly equivalent to the constant

gain simulations. The frequency response graphs depict that the ability to adjust the step

size independently for each element based upon the input variance provides more accurate

placement of the nulls as well as deeper attenuation. The problem of determining a step

size gain based upon misadjustment is relieved by the step size normalization.
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F. Conclusions

The GSC form and the direct form TDL structure adaptive array sensor have identical

dynamic behavior if the LMS and CLMS step sizes are constants which provide the same

level of misadjustment, the GSC form constraint enforced through the conventional

beamforming matrix Wc is equivalent to that of the direct form algorithmic constraint and

the GSC form signal blocking matrix Ws is composed of orthogonal rows which map the

constraint nullspace. Since the emphasis in the examples was a MVDR array which provides

a distortionless look direction response, the constraint was consistent across all forms and

examples. The difficulty in choosing a signal blocking matrix composed of nonorthogonal

rows which would consistently provide a better dynamic behavior was discussed at the end

of section II.C. It was found that the GSC form signal blocking matrix implementing an

adjacent element subtraction led to a quicker convergence for the signal and array geometry

presented in the examples of this section.

The LMS algorithm with a time-varying step size presents two benefits which are

of importance in this study. First, the choice of step size selection is s':rnplified due to its

update as a function of input signal variance (or equivalently, the eigenvalues of the input

process correlation matrix). Second, and most important, this normalization of the step size

leads to a reduction in the dependency between the speed of convergence and the

eigenstructure of the relevant correlation matrix. This is realized Jlue to the fact that the

algorithm can now update each weight independently with separately valued time-varying

step sizes. Thus, each mode of the algorithm can adapt at its own speed. The correlation

matrices which then determine the speed of convergence are then given by P QoD(k) R., P
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and *4's CIGsc(k) R, Ir where QF(k) is a diagonal matrix of the proper dimension for form

F whose elements at time k are given by the individual step sizes presented in equations

(2-86) and (2-87). For the example presented, the eigenvalue spread of the normalized

algorithms and that of the standard algorithm were nearly identical. This is believed to be

due to the modest eigenvalue spread produced by this example's geometry.
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III. CONSTRAINED PROCESSORS WITH ORTHOGONAL FILTER STRUCTURE

This chapter investigates the performance of the GSC form linearly constrained

wideband adaptive array sensor with the adaptive processor replaced by an orthogonal filter

structure. The motivation for utilizing an orthogonal filter realization of the adaptive

processor is that we desire to obtain a new set of data vectors which exhibit minimum

correlation to provide as the input to the adaptive filter.

Consider the GSC form array with a single distortionless constraint as shown in

figure 20 of the last chapter. The operations considered in this chapter are realized by

transforming the data present on each tap in the figure prior to weighting. This

delay-and-transform operation is conveniently represented, in general, by the transformation

matrix Q. This structure is depicted in figure 39. It will be seen that the elements of the

yC(k)
SWC

+ /y(k)

SX(k) Xs(k) Z(k) () ysP~)
S~WS == Q W so5c

Figure 39 Transform Domain GSC Processor Structure
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transformation matrix may be adaptive or fixed. The goal of this transformation, as stated

initially, is to provide a less correlated input Z(k) to the adaptive weight vector WGsc(k).

This chapter will first consider the case of a fixed orthogonal transform structure in

section Ill.A, where the Discrete Fourier Transform (DFT) and the Discrete Cosine

Transform (DCT) with a normalized step size will be extended to the multichannel case of

interest. Linear prediction will be reviewed in section III.B to provide the foundation for

the derivation of the lattice filter structure in section III.C. The converged lattice structure

will be related to the Gram-Schmidt orthogonalization process, and the multichannel

adaptive lattice structure will then be examined as a replacement for the TDL processor.

The Gram-Schmidt orthogonal structure will then be derived directly in section III.D, and

the characteristics of this structure in the GSC form processor will be examined. Simulations

in section llI.E will then be used to compare the performance of these structures

A. Fixed Orthogonal Transform Domain Structure

Ver), early in the history of adaptive array research many investigators examined

frequency domain LMS filters [31,35,36]. The frequency domain transformation is usually

implemented with Q being an invertible matrix composed of the DFT or the DCT

coefficients which operate in an identical manner upon each TDL. The frequency domain

has an intuitive appeal as a method of improving the performance of wideband adaptive

arrays. The transformation from the temporal domain to the frequency domain results in

frequency subbanding, in effect reducing the wideband problem to discrete frequency bins.

The initial research in this area was limited to the analysis of the LMS algorithm with a

constant step size. Compton [29] then published a report which showed that the frequency
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domain structure performance was identical to that of the tapped-delay-line processor, again

utilizing a fixed step size in the LMS algorithm. Subsequently, many other researchers

began examining the use of transform domain adaptive filtering for narrowband single

channel applications whoich considered the use of time-varying LMS step sizes

[28,30,40,41,42,43,44,45,46,471.

Section HI.A.I will present the equivalence of invertible linear transforms for

completeness. This equivalence directly applies to the DFT and DCT processors with a

constant step size and demonstrates that the resulting array transient and steady-state

behavior is unchanged by the transformation. Section Ifl.A.2 will then be concerned with

the main contribution of this section, the wideband multichannel extension of the transform

domain filtering research of Narayan [281, Lee [30], Clark [40] and Jenkins [421. Section

III.A.3 will present the DCT, and section III.A.4 will consider the convergence of these

transform domain algorithms.

1)he..•T_..ransL, -, In order to facilitate the following development, we briefly

return to the TDL structure GSC in order to abbreviate notation. Define the quadratic

correlation matrix function and the quiescent response vector as

S= *,R.*,T (3-1)

Rxd = *,R ,, (3-2)

Utilizing this notation, the optimal GSC weight vector in equation (2-78) may be written in

a form similar to that of the Wiener-Hopf equation which was introduced in equation (1- 18)

Wopt = R;,Rxd (3-3)

The optimal value of the GSC lower path output can be written as

yj.PI= W Jok = (3-4)
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Now, extending the derivation of Compton [291, consider the GSC form array with

an invertible transform Q introduced after the signal blocking matrix and before the adaptive

processor. We note that any reversible operation can not affect the performance of the array.

This situation is clear by considering the new data vector Z, which becomes the input to the

adaptive processor, where

Z(k) = Q1,(k) (3-5)

The transform domain optimai weight vector is given by

WQo= (QR,QT)-1 QRxd (3-6)

and the output of the transform domain structure's lower path is

ys,,(k) ZTWQQ,, (3-7)

=T•rWQQ,,

= MTQT(QR.,QT)-IQRxd

yso,(k)

In fact, it is easily shown that optimal weight vector of the two structures are related by

WQ = IQT] -1W (3-8)

Henice, the transform domain GSC processor with an invertible transform and the TDL GSC

(Q 1) both converge to the Wiener-Hopf solution.

Consider the symmetrical DFT which is implemented upon the signals present at

each channel of the blocking matrix output. For the l-th channel,

Zti = 1 X,.e I=I,K n=l,J
m1l

or, equivalently, for the stacked (K-1)xJ dimensional data vector X at time k

Z(k) = QDFr tS(k) (3-10)
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and QDFT is simply the rank (K-l)xJ matrix of exponential coefficients which realize

equation (3-9). This algorithm has the additional benefit of not requiring an inverse

transform to ofltain the tim:r domair. output [24].

Due to the symmetry of the DFT matrix, we may write equation (3-8) as

WQorr = QDFTW (3-11)

and the weight vector behind each element is simply the inverse DFT of the TDL structure

weight vector.

The transform relation of equation (3-11) depicts that the steady state value of the

DFT and the TDL structure are the same. Following Compton [29], we now show through

the analysis of the correlation matrix eigenstructure that the transient behavior of the two

arrays are also identical for a fixed step size. For the present timc, we will be concerned

solely with the frequency domain transform, and therefore the subscript DFT will be

suppressed.

Define the transform domain correlation matrix as

R,, = i.RX,QT (3-12)

where the operator (7) denotes the complex conjugate. Since Rx, and Rxx are both assumed

to be positive definite and Hermitian, Rx, has a complete set of orthonormal eigenvectors

whose corresponding eigenvalues are real and positive. Denote the i-th eigenvalue of Rx,

as % and the i-th eigenvector as (pi. Then the orthonormal condition may be explicitly written

as

S•=(3-13)

We proceed by'defining the transform eigenvector

(P~i = •JQ- fpi (3-14)
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and note that

tp•, •z. yT4ir [Q-li.O-Q'lqp (3-15)

Utilizing the symmetry of the DFr and the fact that the transformation matrix is realized in

a block diagonal form due to the same transform taking place on each element, we find

-= 12 (3-16)

[Q-Ti=1Q (3-17)

and equation (3-15) becomes

T TI (3-18)9,=.tj, -! QQ-"Pqi =8ij (-8

Now, consider the eigenvector equation

RX,4i = )wipi (3-19)

Substituting equation (3-14) into (3-19) and multiplying by Q-1 yields

Q- RxQ 9Z.A = •zi~ (3-20)

and using the symmetry of the DFT, equations (3-16) and (3-20) can be written as

(QRX,QT)lp, = J iZ (3-21)

so that it is evident that
RZZ4Zi Xi J :.i, (3-22)

Then each eigenvalue of Rzz is simply J times the corresponding eigenvalue of Rx1, and we

conclude that the eigenvalue spread for the frequency domain structure and the TDL

structure GSC are identical.

2) The DFT Frequency Domain Structure with Suhhand Normalization- Both

Compton [29] and Lee and Un [301 have examined the performance of the DFT algorithm
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presented in equation (3-21). Compton concluded that the TDL and DFT structures always

perform identically in his analysis of single and multiple channel adaptive filters. His work,

however, did not consider normalization of the adaptive step size. Lee and Un realized the

possibility of achieving better convergence properties through the normalization of the step

size, as have Narayan et al. [28]. However, both of the latter authors restricted their analysis

to single channel filters and hence, were not able to realize the normalization conditions for

the adaptive algorithm step size which is now presented to yield speed of convergence

improvement in the adaptive array sensor problem. Following the notation of Narayan, we

define these conditions and present a method of multichannel variance averaging which

results in better dynamic behavior while achieving the same steady state Wiener solution.

Consider the normalized step size for the unconstrained LMS algorithm

W(k+l) = W(k) + I±(k)y(k)X,(k) (3-23)

where at time k

g(k) - (3-24)
01 ,(k)

is a diagonal matrix composed of the averaged signal variances. We note that the averaging

operation for the TDL structure was a multichannel extension of the only one which can be

considered in the single channel case; averaging over the channel. Thus, for the n-th channel

^A2 ^2 1. ) (3-25)a11,(k) = , o',,(k -1) + X(k)Xj.(k)

The steady state convergence of the normalized step size LMS algorithm and the variance

estimate of equations (3-24) and (3-25) were considered in section D of chapter II.

It would seem reasonable to conclude that better transient behavior would occur

when the weights were able to adapt in each frequency bin through a normalized step size
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in which the variance was averaged over the power present in that frequency bin. An

algorithm which accomplishes this utilizes the estimate

(3-26)
gt(k) = IA3-6)2

•1,1: =•ol(k-^2 l) + •-1) Z(k) Zf.(k) (-7

and the weight state update

WoFn(k+ 1) = WDF7(k) + g(k) y(k) Z(k) (3-28)

wherefn is the n-th frequency bin.

3) The Discrete Cosine Transform. The DCT has the computational advantage of

using only real numbers to provide a transform of the input data. Further, this transform

was chosen for comparison to the DFT since recent articles in the literature [24, 28,441

reported that the narrowband single channel DCT adaptive filter provided better results than

the DFT and other orthogonal transform filters for a class of data used in speech related

applications.

The DCT orthogonal transform for the I-th channel is given by

r2- (3-29)
2 IX'. 1=1 n=lJ

ln= rn-I
2 1 7c(2jn+l(n-1))

2 IX,.co 2J J I=2,K n=1,J

which is represented at time k by the (K- l)xJ dimensional vector

Z(k) = QDcTjs(k) (3-30)

and QDcr is simply the rank (K- 1)xJ matrix of real coefficients which realize equation (3-29).

4) The Trarnsform Domain Convergence: Th? • eed of convergence of the weight

vector WDFr(k) is a function of the eigenvalue spread of the correlation matrix
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I R: =IA Rx, QT ] (3-31)

We now assume without any loss of generality that the observation process variance is unity.

Since the trace of a matrix is the sum of its spectrum, for any square matrix R we can say

XR,• 5 trace(R) (3-32)

Similarly, the determinant of a matrix is the product of its spectrum. For any positive definite

hermitian matrix whose rank is greater than two, it can be shown [281 that

R,,~ ;! det(,P) (3-33)

Therefore, an upper bound for the eigenvalue spread can be expressed as

trace(R) (3-34)
det(R)

From equation (3-31), the trace and determinant are expanded as

trace(q Rzz) = trace(R,,) = KJ (3-35)

det(Ip Rz,) det(1L)det(R1,) (3-36)

and from equation (3-34), the upper bound is found to be

rq± Rz) = KJ 1I(R) (3-37)
det(1±) det(Rx,) - det(IL)

Since the input process variance was assumed to be unity, the determinant of gi will be less

than or equal to unity. Thus,

r (IL Rzz:) r(Rx,) (3-38)

The equality condition holds when pt is normalized through the averaging of element

variances and the subband normalization of equations (3-26) through (3-28) improve the

transient characteris'ics of the sensor, as will be shown in the simulations at the end of this

chapter.
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B. Linear Prediction

The lattice structure to be derived solves the adaptive array sensor problem by

performing two optimum estimation operations jointly. The first is linear prediction, which

is used to transform the correlated inputs into a corresponding sequence of uncorrelated

backw.rd error predictions. The second estimation is the familiar optimum filtering

operation which produces the estimate of the desired response, or equivalently, the array

output. We now derive the optimum forward and backward scalar linear predictors. This

development follows Haykin [27].

1) Forward Linear Prediction: The forward linear prediction problem is concerned

with predicting a future value of a stationary discrete-time stochastic process given a set of

past sample values of the process. Consider the time series {x(k), x(k-l),...x(k-J)) which is

composed of J+1 samples. The operation of linear prediction makes an estimate of x(k)

given the sample values x(k-1) through x(k-J). Let Xa- uenot' •: !-dimensional space

spanned by {x(k-1),x(k-2),...x(k-J)} andx( k I Xk-. )denote the predicted valut oifx(k) given

this set of samples. The predicted value may, in general, be express," I rs dcome function E

of the given samples

( k ) = E(x(k-. 1),X(k-2),..x(k-J)) (339)

and is termed linear prediction when the function E consists of a linear combination of the

samples in the form

A (3 -40) ;

A, k k 1 w.'xkn
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The forward prediction error equals the difference between the actual sample value

x(k) at time k and its predicted value X( k I X,-_ ). The forward prediction error is denoted

fi(k) and given by

ji(k) = x(k) - xA(ki k-_) (341)

where the subscript I signifies the order

The single channel forward prediction operation is depicted in figure 40. The

predictor consists of J unit-delays and J tap weights wol, 1=1,2,...J which are assumed to be

optimized in the mean-square se.sc and fed with the respective delayed samples of the

observation process. The resultant output is the predicted value of x(k) given by equation

(3-40). Then, we may write equation (3-41) as

J' (3-42)
fJ(k) =x(k) - wo x(k-n)

n=I

Xlk) - Xk-i X -k-2) k1

""0J X(k)

Figure 40 Forward Predictor
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X(k)z-1 X(k-) .,X(k-2) Z" X(k-J)

a10  a,1  ap
fj (k)

Figure 41 Forward Prediction Error Filter

Let a,,, n=O,1,.. J denote the tap weight values of a new T1)L filter which are related to the

tap weights of the forward prediction filter as follows:

ajn I n=0 (3-43)

SThen, equation (3-42) may be expressed as

(3-44)
fJ(k) = ajn x(k - n)

which yields the filter depicted in figure 41 and is tered a forward prediction-error filter.

2) Backward Linear Prediction: We may also operate on the time series {x(k),

x(k-1),...x(k-J+l)) to make a prediction of the sa pie x(k-J). Let XA denote the

J-dimensional space spanned by Ix(k), x(k-I),...x(k-J+l ). Then we may write

A 1 (3 -45)
x(k-ilL)= gRnx(k-n + 1)

n,,
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to represent a linear prediction of the sample x(k-J), where g is the J-dimensional vector of

tap weights which are also assumed to be optimized in the mean-square sense. In the case

of backward prediction, the desired response is given by d(k)=x(k-J) and the backward error

equals the difference between the actual sample value x(k-J) and its predicted value
A,

x( k-I I Xk). The backward prediction error is given by bI(k) where

b.(k) = x(k-J) - x( -JI Xk (-46

and, from equation (3-45), we may write

.J (3-47)
bi(k) = x(k - J) - Ygn x(k - n + 1)

n=1

Defining the tap weights of the backward prediction-error filtei in terms of the corresponding

backward predictor weights as

{=-k+ l n=0.1....J-I (3-48)
1 n=J

we may write equation (3-47) as

J (3-49)
bA(k) = cjn x(k - n)

M=0

where the backward predictor and backward prediction-error filter are depicted in figures

42 and 43, respectively.

3) The Solution and Relationship of Prediction Weight Vectors: Assuming

stationarity, the correlation matrix for both the forward and backward processes may be

expressed as

R = ElxxrTl (3-50)
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__X(ki i X(k) X(k-2)

1 92 j (k-J)

Figure 42 Backward Predictor

-- X(k) Z.1 X(k-1) XZk1 X-k

cjo Cii cJ bj(k)
. . .____ -- - _

Figure 43 Backward Prediction Error Filter
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where x is the J-dimensional vector composed of the observation process samples. The

cross-correlation vectors may be formulated for the forward and backward predictors as rf

and rb, respectively:

jx(k-l) x(k) I r(-1)I (3-51)

r ' E/. x r(-2)k,' k-J)xk.-J) j j
x(k) x(k-J) () (3-52)

x(k-1) x(k-J) r- 1)r b=E

x(k-J+t1) *(-J) [r('l)

The solutions to the forward and backward linear prediction problems are given by the

Wiener-Hopf equation as

Wo = R-1 rf (3-53)

g = R-1 rb (3-54)

Denoting the vector formed by reversing the elements of the vector g as g,, we note from

equations (3-51), (3-52), (3-53) and (3-54) that

8B= Wo (3-55)

and the ensemble error variances for the forward and backward predictors are identical siace

(r )rg = (rf)rgB and

ElI b, 12 = r(O) - (r b)Tg = r(O) - (rf)TgB = r(O) - (rf) oT" = E[Ifj 12 1 (3-56)

C. The Lattice Filter Structure

We know extend the results of the previous section to the vector case of interest and

the consider the GSC data vector XT derived in the last chapter. The lattice filter solves the
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prediction problem by finding orthogonal bases for the subspaces Xk-i and Xk. The

Wiener-Hopf solution for the Ti)L structure optimum filter derived in chapter I determined

the weighting coefficients associated with each basis vector of the subspace of past

observations such that the prediction error was orthogonal with respect to that subspace.

The lattice structure differs in that one first constructs an orthogonal basis of the subspace

of past observations, and then projects the vector Xs(k) successively onto the orthogonal

basis vectors. Consequently, since the projections are formed onto the orthogonal basis

vectors, successive stages of the lattice are decoupled. Hence, one may increase the order

of the filter by adding additional stages to the lattice while the original lower order predictor

remains optimal in the expanded structure. Thus, it is no longer necessary to use the

fixed-order Wiener-Hopf equation to determine the optimal filter coefficients.

1) The Optimal Lattice Filter: The lattice filter structure is derived by employing a

recursive formulation of the Gram-Schmidt orthogonalization procedure for orthogonal

projections. Following Strobach 1261, we denote the inner product of two vectors A and

B as <A, B>. Let the (K-I) dimensional vector at stage n, F,, be the complement of the

orthogonal projection of a vector Xs ontoY the subspace Xn denoted

Fn = x,< X.- I X,(n)> =X< X,>

with the property

F T X1(n)=O l= 0 1 n!5 J (3-58)

then the orthogonal complement F, of the n-th order projection can be constructed

order-recursively from the orthogonal complement F,_- of the (n-l)-th order projection

using the recursion formula

80



X,< ._1, X5(n)> = Xý< Xn-2, X5(n-l)> + K, X,(n)< X,-2. X,(n-1)° (3-59)

or, equivalently,

F= Fn-I + KnXs(n)< Xn-l> (3-60)

where the (K-I) x (K-I) matrix Kn is given by

K. = ( X,(n)< X.-i> XT(n)< X"-I>)-, Xs(n)< X,-I> Xf< -> (3-61)

This can be proved by considering F,(Kn) as a vector constructed by the linear combination

Fn(Kn) =X< X<-I> + Kn Xs(n)< xn-I> (3-62)

Then, F, is orthogonal with respect to the subspace Xn-I extended by the vector Xs(n) and,

equivalently, is orthogonal to Xn-I and Xs(n)< Xn-I> if and only if the parameter Kn is

adjusted such that the Euclidean norm of F.(Kn) attains a minimum. This follows directly

from the geometrical considerations of the Wiener-Hopf solution and leads to a least-squares

determination of Kn via the approach

minF F, (3-63)

Substituting equation (3-62) into (3-63), taking the gradient and setting it eoual to zero gives

aK, _ 2 xT' < X,-•> XI(n)< X.-i> + 2 &. XT(n)< X,-_>Xsf,)< X,> = 0 (3-64)

which yield, equation (3-61) and determines Kn such that F. is orthogonal with respect to

the extended s .bspace spanned by Xn-I and Xs(n) < Xn-1>, or equivalently, with respect to

the subspace Y n.
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The vector Xs(k) may be projected successively onto the components of the subspace

of past observations as follows:

Fo(k) = Xs(k) (3-65)
FI(k) = X,(k) <X,(k-I)>

F2(k) = X,(k) <Xs(k-1), X,(k-2)>

Fjk) = X,(k) <,Xs(k- 1), X1(k-2), ...,X,(k-J)>

Similarly, we may successively construct an orthogonal basis of the same subspace as

BRok) = X,(k) (3-66)
Bi(k) = Xs(k-1) <Xi(k)> = X,(k-1)Bo(k)>

B2(k) - X(k-2) <X(k) , X5(k-l)> = Xs(k-2)<Bo(k) , B(k)>

Bjk) = X,(k-J) <Xs(k) X,(k- 1), ...,X. (k-J+ )>

These nonrecursive decompositions are a consequence of applying the Gram-Schmidt

orthogonalization procedure. They can be made recursive by applying equations (3-59),

(3-60) and (3-61) to the last terms in equations (3-65) and (3-66):

FN(k) = Xs(k)< X,(k-l). ,X,(k-n+I)> + lWn(k)Xs(k-n)< X/(k-), ... ,X,(k-n+l)> (3-67)

B^(k) = Xs(k-n)< X(k-1),. ,X,(k-n+ 1)> + K(k)X,(k)< X3(k-I).... ,X(k-n+l)> (3-68)

Equations (3-67) and (3-68) may be expressed in terms of the orthogonalized vectors

Fn-l(k) and Bn-i(k) at stage n-1, establishing the recursive laws

FI(k) = F.-t(k) + Al((k)B.-_(k-1) (3-69)

BN(k) = Bn-l(k-I) + K, (k)F,-I(k) (3-70)

with the initial condition

Fo(k) = Bo(k) = Xs(k) (3-71)

From equation (3-61), the matrices Kf(k) and 4•(k), termed the forward and backward

reflection coefficient matrices, respectively, can be defined as
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-~ (I1(1 T~~~1) (n(kBIIl)T (3-72)

K' (k) =-(Fn~i(k) Fn1 1(k)) (F.,_i M) Bn i R- 1) )

It is noted that equations (3-72) and (3-73) are identical to those presented by Griffiths [39,

equations I la and IIb].

The preceding derivation was concerned solely with the optimal predictors. The

symmetiy of the autocorrelation function showed that the optimal backward predictor

coefficients are the mirror image of the optimal forward pre'liction coefficients and that the

backward and forward prediction errors have the same norm (the lengths are the same, but

the error signals themselves are not). The backward prediction errors are orthogonal to each

other and time-shifted versions of both the forward and backward prediction errors are

orthogonal. Thus, the generation of a sequence of backward prediction errors by a lattice

filter consisting of n-stages is equivalent to a Gtzm-Schmidt orthogonalization process

applied recursively to a corresponding sequence of input samples. Haykin [27, pp. 173-1781

shows that this transformation of the tap-input vector Xs(k) into the backward

prediction-error vector Bj(k) can be accomplished through the premultiplication of the input

veCtor by a lower triangular matrix L (where, from the preceding section, Q = L) with l's

along the diagonal. The non-zero elements along each row of the matrix L are defined by

the tap weights of the backward prediction-error filter whose order corresponds to the

"posi ion of the pertinent row in the matrix. This matrix L, where we may explicitly write

Bj(k) = L Xs(k) (3-74)

is nonsingular and hence, there is a one-to-one correspondence between the input vector and

the backward prediction-error vector. It is again emphasized that these properties are

applicable only to the optimal predictors.
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2) The Adaptive Lattice Structure GSC Form Processor: The GSC form array

presented in Chapter II will now be examined with a data dependent adaptive lattice filter

structure replacing the TDL processor. This section follows the work of Griffiths [37,38,391

and Lee, Chang, Cha, Kim and Youn [481. The all zero fixed coefficient lattice filter has

the same transfer function as the fixed coefficient TDL filter, and the scalar filter coefficient

conversions are presented clearly in Oppznheim and Schafer [251. The lattice filter, as

derived above, achieves the transfer function through an orthogonalization procedure. This

property of the lattice structure will be shown to be capable of providing desirable

convergence properties in the adaptive multichannel structure. The recursive form of the

lattice structure GSC is presented in figure 44.

The basic adaptive lattice stage represented by each box in figure 44 is shown in

figure 45. The delayed observation data sequence X(k - I) is transformed into the orthogonal

sequence B1(k) through the Gram-Schmidt type relations described in equations (3-69),

(3-70) and (3-7 1) and, with a slight change of notation, repeated below:

o( (k)=Fo( k&)= Xs (k) (3-75)

BI (k) = B,-I (k - I)- W (k) F-I (k) (3-76)

SF(k ) = FI-I ( k)- WI(k) AB-1 (k- 1 )(3-77)

These order u, 6ate equations relate the higher order forward and backward

prediction errors to lower order prediction errors. The signal BI(k) is the backward residual

at stage 1, and Fj(k) is the forward residual at stage I. Both of the residual vectors at time k

are of dimension (K-i) x 1. The backward and forward reflection coefficient matrices

W/'(k) and WI(k) are of dimension (K-1) x (K-I) and 'are commonly termed partial

correlation (PARCOR) coefficients. The residual vectors in equations (3-76) and (3-77) are
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Figure 44 Lattice Structure GSC Form Array

Figure 45 Lattice Filter I-th Stage
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recursively updated through the use of the LMS algorithm to minimize their mean squared

norm value:

TIV Tk+I W i i FT(-8

The optimal PARCOR coefficients are independent of the filter order, so that the PARCOR

values in any one stage do not depend on those of other stages.

The Gram-Schmidt type of orthogonalization which the lattice filter stages form may

increase the speed of adaptation in subsequeni stages. The residual becomes increasingly

white as the ordler of the filter increases. The backward residuals from stage to stage are

orthogonal after the PARCOR coefficients converge, resulting in the aforementioned overall

convergence rate increase.

Consider the lattice filter structure implementation of the GSC shown in figure 44.

The J coefficient vectors GI ( k ) are of dimension (K-1) and utilize the LMS algorithm to

minimize the mean squared value of the l-th stage error signal E,( k)

E. (k) =yc (k) GoT(k) Do(k) (3-80)

The time-varying step size gains are normialized to the input signal variance, and are diagonal

matrices given by

I p__ __ _ __ _ (3-83)

;L8(ikK-I B~(k

0 else
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/e/s

_ _-_ _ _ 
(3-84)

/(i #,k,) = 13 •,, (i,k- ) I + k- )
gl~i i ~ + K-1

0 else

___ __ __ ___ __ __ _ (3-85)

At, (ij,k )=K-1

0 else

On:e the PARCOR coefficients have converged, the convergence rate of the lattice

structure GSC estimation weight vector GI(k) is no longer dependent on the eigenvalue

spread of the correlation matrix Rx, but upon the (K-I) x (K-I) dimensional correlation

matrices of the forward and backward prediction errors. It is this property which provides

the capability for a faster convergence rate which can not be achieved with the corresponding

TDL processor.

The process of generating the backward prediction error process from the

observation process can in general be represented by the matrix operator Q = L where

h(k) = L(k) ,(k) (3-86)

where the matrix L(k) is data dependent and changes with each adaptation in accordance

with equation (3-76). Once the PARCOR matrices converge, this transformation takes on

the lower diagonal form mentioned in section III.C.1 and the input to the conventional

weighting structure G(k) = [Go(k) GI(k) ... Gj-l(k)]T is orthogonal due to the realization of

a Gram-Schmidt transformation.
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The direct implementation of the Grum-Schmidt algorithm serves as an alternative

method of realizing a completely orthogonal signal set to serve as the input to the adaptive

processor. The direct Gram-Schmidt orthogonal structure utili/ing the LMS algorithm was

first developed by Griff'iths 1191 and utili/ed a constant step si/e. This was later modified

by LAe et al. 1481 to include Nth ~a time-' arN ing %t:tp si/e and in escalator realization, where

the unit lower triangular tran~torm Ii .Ttatori'atiton is utili/ed. Following Griffiths [39j,

the structure may hL reajli,ed in thec t~',rm of* figure 1.9. A hcre the matrix Q is composed of

time-varying ce fficients and the i K- I Jd OI~PUIN s~alliy

~k..~j0 (3-87)

The matrix L s lower triangular and composed of ek-ments, q,., which may be

represented as

[0 0 (3-88)

q(jr- i .i qkIJ(-

The orthogonalization procedure generates the orthogonal output Zm(k) via the recursive

relationship

*ym, I(k) kzm(k) (3-89)

*ym,m(k) zm(k)

= -) Cm~n(k) z,,(k) 2 !5 m !5 (K- I)J
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where the value of cm,,i is chosen to minimize the local values Eb,M,,,+I(k)] shown in figure

46. In conjunction with the me.hod of gradient descent, we may write

a yj,2 (k) (3-90)
Scm,.(k+l) = Cm,n(k) + p a c,,(k)

This result may be achieved through the use of the LMS algorithm to update the

adaptive coefficients cm.,

cm,n(k+l) = cm,n(k) + .14(k) ym,n+I(k) zm(k) (3-91)

where gi(k) is the time varying step sized formed in the same manner earlier established in

this research,

gn(k)- A2
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The matrix Q in equation (3-88) is then given by [I + Cf-1, where C is lower triangular with

zeros on the diagonal and elements Cm,,. The form of the Gram-Schmidt structure, presented

in figure 46, depicts the generat;on of the matrix C. The orthogonality in this structure is

complete after the convergence of the adaptive coefficients via the LMS algorithm in

equation (3-91).

E. Example and Transient Analysis

Thus far in this research, we have derived and examined the TDL structure, DFT

and DCT orthogonal transform structure, lattice structure and Gram-Schmidt orthogonal

structure GSC form linearly constrained MVDR adaptive array.

This section will be explicitly concerned with evaluating the transient behavior of

the adaptive structures under consideration. The ensemble mean-square error for each case

will be estimated and compared. The performance as a function of computational

complexity w~ill be examined and related to the more computationally expensive least

squares techniques, utilizing Sample Matrix Inversion (SMI) [341 as a reference.

The first example to be considered is a continuation of the the simulation from the

second chapter. A second example is then generated, where the array to be considered for

the simulation is composed of ten linear sensors (K= 10) equispaced at half-wavelength. The

sampled signals are delayed via an FIR filter of order eight (J=8). The tap spacing in both

1
examples defines a frequency offo = 1 = "I. There is one desired signal, in whose direction

the array is assumed to be pre-stee~red. The look direction sensor noise is omitted from both

of these examples.
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The first example examines the transient behavior of the array via simulation for the

TDL, DFT, DCT, lattice and Gram-Schmidt structures GSC Ws2 form constrained adaptive

array. The propagating signal descriptions remain unchanged from table I in the example

of Chapter II. The behavior of the structures are characterized by the estimated mean-square

error and estimated mean transform domain weight transients. The mean-square error

estimate for each structure was formed by averaging the output power of each processor

over two hundred independent simulations (consisting of three hundred adaptations each),

and the mean weight vector values were similarly averaged. Again, the same observation

data was provided to each adaptive filter structure during the independent simulations for

consistency.

The graphs in figures 47 and 48 present the ensemble weight vector trajectories and

learning curve for the TDL structure. The graphs presented in figures 49 - 50, 51 - 52, 53

- 54 and 55 - 56 depict the analogous results for the DFT, DCT, lattice and Gram-Schmidt

structures. The benefit of using of an orthogonal transform is readily apparent by the better

mean-square error performance of all such structures compared to the TDL in figure 48.

The behavior of the time-varying orthogonal lattice and Gram-Schmidt structures appear

nearly identical, as was expected by their derivations. The DCT frequency domain structure

performs nearly as well as the time-varying orthogonal structures while the DFT structure's

performance is only slightly better than that of the TDL. To better depict the situation, figure

57, 58, 59 and 60 present the TDL, DFT, DCT and lattice structure's performance (dotted

lines) versus that of the Gram-Schmidt (solid line), respectively.
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.7 7,2 M-1

The normalized time-varying step-sizes for each structure were initialized to the

1
value ZI(0) g(O) for both the TDL and frequency domain structures, where Z is the transform

domain data vector (the transform is Q=1 for the TDL), and to the value .__ for both thez2'(0)

lattice and Gram-Schmidt structures. Whiie this conveniently removes the necessity of

choosing an initial step size / power estimate, it does result in the minor MSE overshoot

present in the figures.

The mean-square error performance of the second example is now considered, where

the array consists of ten sensors and eight taps per sensor. The signal characteristics for the

ten sensor array are described in table 2. It is noted that jammer #2 is now centered at the

same frequency as the desired signal and that it has a larger bandwidth.

Table 2 Signal Characteristics

SOURCE e POWER CENTER BANDWIDTH
FREQUENCY

desired signa' 00 0.001 0.3fo 0.1
jammer #1 -12.560 1.0 0.4fo 0.05
jammer #2 -16.560 5.0 0.3fo 0.15
.jammer #3 25.580 10.0 0.2'o 0.07

The mean-square error performance of the TDL, DFT, DCT, Lattice and

Gram-Schmidt structures are depicted in figures 61, 62, 63, 64 and 65, respectively. These

results were generated by averaging the mean-square error of two hundred independent

simulations consisting of five hundred adaptations each. The performance of the TDL, DFT,

DCT and lattice structures (dotted line) versus that of the Gram-Schmidt (solid line) are

presented in figures 66, 67, 68 and 69.
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The results are very similar to those of the last example. The performance of the

DFT is not much better than that exhibited by the TDL structure. The DCT structure's

performance is considerably better than the TDL. The lattice and the Gram-Schmidt

structure's pcrformance is nearly identical. It is noted that the DCT structure achieves the

same mean-square error performance as the Gram-Schmidt after approximately two hundred

adaptations, while both the DF'7 and the TDL structures do not attain that level throughout

the five hundered adaptations period.

These results may be viewed as presenting a graphical representation of the

capability each structure has to provide an uncorrelated signal set to the processor. The DCT

and DFT both incorporate data-independent transforms and therefore are not able to change

in time with the input process. Thus, given that the LMS step sizes are computed

equivalently across the different structures, the performance increase of these transform
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domain structures over the TDL is limited by the capability of the fixed transform to produce

a diagonal correlation matrix. The Gram-Schmidt structure is data dependent, and

continuously attempts to provide an orthogonal output based on the input process. The

lattice structure maps the input data to an orthogonal basis through independent stages, as

described in section III.C. Therefore, after the convergence of the PARCOR coefficients,

the lattice structure also produces a completely orthogonal output.

The computational requirements of the different structures are now compared. The

measure of computational complexity used will be the number of adaptive coefficients

required for the realization of each structure. Since the LMS algorithm is being used for all

structures, the number of required operations (multiplications and additions) for each

coefficient will be the same, except for the DFT, where the operations are complex. Thus,

this measure is reasonable and provides a comparable quantity.

The required number of adaptive coefficients for the structures is presented in table

3. For the array used in the second example, K=10 and J=8 so that the TDL, DFI' and DCT

Table 3 Computational Requirements in Terms of Adaptive Coefficients

STRUCTURE ADAPTIVE COEFFICIENTS

TDL (K-1)J
Frequency Domain (K-1)J

Lattice (K-I)J+2(K-1)2(j-I)
Gram-Schmidt (K-I)J+[(K-1)J][(K-I)J-1I/2

structures required 72 coefficients, the lattice required 1,206 and the Gram-Schmidt structure

required 2,628 adaptive coefficients.

Sample matrix inversion is a weight determination approach, and Gram-Schmidt an

algorithm for solving the SMI or least squares problem [55]. Thus, the Gram-Schmidt

structure provides a means of realizing the SMI algorithm. Gerlach [56] and Youn [551
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recently commented on the convergence behavior of these two algorithms, and both agree

that they are numerically equivalent assuming infinite numerical accuracy. Therefore, a

direct comparison can be made of the computational requirements (in terms of the number

of needed adaptive coefficients) with respect to the least squares algorithms, where the LMS

version of the Gram-Schmidt structure presented here is the lower bound in terms of required

operations.
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IV. CONCLUSIONS

The purpose of this research was to investigate methods of improving the transient

response of constrained adaptive array sensor processors while simultaneously satisfying a

requirement for limited computational resources. The adaptive processor using the LMS

algorithm provides the smallest computational requirements. This processor was developed

for the standard TDL structure in chapter I and investigated in terms of the constrained array

sensor problem in chapter II. It was shown that the tradeoff for computational simplicity

was a transient behavior dependency upon the eigenstructure of the correlation matrix which

described the signal and array geometry. This same problem motivated the development of

more expensive least squares techniques which led to a solution exhibiting independence of

the correlation matrix eigenstructure. Thus, the course of action undertaken in this research

was to investigate methods of improving the convergence properties of the LMS array

processor in order to gain performance similar to that of the least squares algorithms while

maintaining computational simplicity.

The development and utilization of the GSC form linearly constrained MVDR

adaptive array sensor in chapter II allowed the adaptive processor to be realized in an

unconstrained manner while the overall solution satisfied the constraint. This feature of the

GSC provided the motivation to replace the standard TDL structure processor with an

orthogonal filter structure. In chapter III. the DFT and DCT frequency domain structures,

the lattice structure and a direct implementation of the Gram-Schmidt structure were

investigated. The results of the simulations presented in chapter III clearly depict the

advantages of orthogonal structures for the linearly constrained MVDR processor.
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The fixed transform frequency domain structures have been shown to provide an

improvement in the transient behavior of the adaptive array at no increase in the (K- l)J

adaptive coefficient computational requirements. However, this structure may still be

dependent upon the eigenvalue spread of the correlation matrix. Furthermore, there is no a

priori method of knowing which fixed transform will provide the best results for any given

observation process. In general, the use of the frequency domain structures will provide

some benefit in the arrays dynamic behavior as long as subband normalization is used, and

the benefit may be great depending upon the effectiveness of the transform and the

interference dynamic range.

The DCT structure processor provided an effective orthogonal transform which, with

the use of subband normalization, led to a transient behavior which was extremely close in

performance to that of the lattice and the Gram-Schmidt structure. Furthermore, as depicted

in table 3, the structure's real valued DCT transform required only one matrix multiplication

more computational complexity than the TDL and no additional adaptive coefficients.

The transient performance of the lattice structure is greatly improved over that of the

TDL and frequency domain structures. If the increased computational requirements of

2(K- 1)J+2(K- 1) (J-1) are acceptable, then the lattice structure is the processor of choice. It

is noted that this computational complexity is less than that required for least squares

methods. The convergence time of PARCOR coefficients in the lattice structure are

dependent upon the eigenstructure of independent backward prediction error correlation

matrices of smaller-order than the original correlation matrix. Once these coefficients

converge, a completely orthogonal process serves as input to the standard LMS adaptive
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processor. Since the PARCOR coefticienLs are similarly updated via the LMS algorithm,

the computational increase was able to he directly compared in table 2 of the .ast chapter.

The Gram-Schmidt structure's performance was seen to be the best. It provides an

orthogonal output to the adaptive filter via a direCLt orthogonalization process. The

Gram-Schmidt structure, however, suffers from a large computational burden in adapting

the 1(K-l)J][(K-1)J-I1/2 LMS coefficients required for orthogonalization.

In those applications where the DCT performs as well as in lhie examples of Chapter

III, the DCT frequency domain structure should be the processor of choice for performance

versus complexity. The lattice structure provides the best overall performance for cost,

providing a nearly equivalent behavior to the Granm-Schmidt suructure. Either of these latter

two structures will provide a transient performance that is numerically equivalent with the

least-squares techniques.

Areas for further research include studying the behavior of these structures when the

input process is non-stationary, investigating the utility of an adaptive GSC blocking matrix

in order to serve as a pre-processor and provide a more uncorrelated input to the adaptive

filter structure (especially for the case of the structure employing a fixed frequency domain

transformation), analysis of other 9rthogonal transforms in the frequency domain GSC

structure, and sensitivity analysis via derivative or soft constraints to the LMS algorithm.

Furthermore, the analysis of the Short-Time Fourier / cosine Transform and the application

of wavelet transforms to the frequency domain structure are recommended in order to

provide a capability to track the input jrocess statistics in a manner similar to that achieved

by the lattice and Gram-Schmidt structures.
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APPENDIX I

The basic reference for this appendix is Lancaster [18j. Throughout this section.

r will denote a general field and R will denote the set of real numbers.

DfinitionAL-,1: A :;ubspace

Let { denote a linear space over a field r and consider a nonempty subset 4o of the elements

from 4. The operations of addition and scalar multiplication are defined for all elements of

4 and, in particular. for all elements belonging to 4o. If these operations are closed in E,

so that for scalars! a.yand vectors A, B: A e ),B e,

eaA+ yB e

then we say that •, is a subspace of {.

Ift is a linear space, it is readily verified that if 0 is the zero element of 4, then the

singleton (0) and the whole space 4 are suhspaces of 4. These are the trivial subspaces. It

is important to note that the zero element of 4 is necessarily the zero element of any subspace

1o of 4. This can be shown to be nrue by considering ax A = 0 where a = 0 is scalar and

D A null space or kernel

The set of all vectors W such that AT W = 0 is the nullspace or kernel of the matrix A and

is written Ker A.

TT

Propo~sitionA 1-1: Let A r""I• . Then the set of all solutions of the homogeneous

equation AW = 0 forms a subspace of 1• which, by definition A 1-2, is I = ker A.
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Proof of PropositionAl-1: Let Y,Z: Y E Y,Z e I . Then the vectors must

satisfy ATy = 0 and ATZ = 0. For any scalars x and y the vector Ar ( oaY + YZ ) = 0.

Hence. Y. = ker A is a subspace.

Defnitin A13 A range space or image

A dual concept to that of the null space is the range space or image of a matrix A , denoted

lmA. LetArT E r' then

ImAm.} E I[:y=A TW forsomeW E Il.

DefinitionAI-4: A span of a subspace

Any subspace containing the elements ai must a!so contain all elements of the ftrm

n
a., {•a, for any ai e r. This implies that the set of all linear combinations over r of

1=1

the elements aai ' belonging to a linear space 4 generates a subspace ýo of •.

It can be seen that the subspace ýo above is the minimal subspace of ý containing

ýaj ýn in the sense that 1 = ýo for any subspace • which also contains 1ai . This

minimal subspace is called the linear hull or span of laj •" over r. Thus,

n

span "a,- = ,a E 4: a I ta,,a5E r,
i=1

D einiionA Idempotent Matrix

The matrix A is said to be idempotent if

A2=A

which infers that for any positive integer i and idempotent matrix A , A' = A.
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PropositionA 1-2: If P is an idempotent matrix, then:

1. 1 - P is idempotent.

2. Im(I -P) =ker P

3. ker (I - P) = Im P

Proof of Proposition Al -2s

2. ifye Imn(I-P),theny=(I-P)x forsomexe I-A. Therefore,

py=p(I-p)X=(p-p 2 )x=O

and ye kerP. Conversely, if Py=O ,then (I-P)y=y and ye lm(I-P)so that

Imn(I-P) =kerP.

3. similar to the above argument, let y e ker (1--P). Then Py =y since

(I-P)y=y-Py=O and ye Im P so that ker (I -P) = ImP.

ProposlitionaAL3 If P is idempotent, then ker P +ImP =

Proof of Proposition AI-3* For any xc e ' we can write x =X,+X2 , where

x,=Vl- P)x and X2 =Px. Note that xe ker P whileX2 E Im P. Hence, the whole space

is defined as I"=kerP + Im P. Furthermore, if x e ker P nIm P, it must be the zero

element.

De~finitionm.Al-6 A proj.-tion matrix

An idempotent matrix is a projection matrix. Each idempotent matrix P generates two

unique mutually complementary subspaces 41 ker P and ý2 =Im P and their sum is the
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entire space. Thus P performs the projection of the space r' on the subspace 42 parallel to

41 or onto 42 along •.
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APPENDIX II /

This appendix presents the proof that the GSC processor with any form of' a spatial

matrix filter Ws satisfying

WJC = 0 (A2-1)

rank (Ws) = (K - 1) J (A2-2)

where the constraint matrix C is defined in equation (2-5), will yield an optimal processor

which is equivalent to both the partitioned form and the direct form CLMS processors under

the same constraint. This derivations follows directly from Jim [54].

The problem may be stated as follows: .

Given the KJ x J dimensional constraint matrix C; the relationship WsC = 0, resulting from
•/.7

the fact that look direction signals are eliminated from the GSC lower path; the KJ x KJ

non-singular matrix [W~s C], which spans the entire signal space since the rank of C is ,I

and the rank of Ws is (K-I)J; and the KJx KJ non-singular symmetric matrix Rxx; then, from

equations (2-63) and (2-78),

I-WT (W5R,.WT)-' W1R,,. = Rx- C (CTR;. C)- ICT (A2-3)

The proof is now developed through the existence of an orthogonal non-singular

transformation matrix T such that

(A2-4)

Then,

mr)V wsri [U 0j 1~ (A2-5)

We now let
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TRxxTT[A T B]= (A2-6)

and consider an operation

(7T)- [1-Wf(WsR.uWTf'WsRu=RI-C(CTRJCY10 IC TI (T') (A2-7)

this implies

(A2-8)

which may be written as

To show that equation (A2-9) is valid, let h1be given by the block partition form matrix

k-=XT ] (A2-10)

Then

X =(A - BI'Bf-' (A2-1 1)
Y=-A'IBZ

Z=D-' + D-BT(A -BDB ")-'BD-'(D -BTA -B)-

Furthermore,

V t (t TV C' tT[ XV ][VT ZV]-'[ VT] (A2-12)

=[O -A']

and
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A

*T (*A0T)-I *A A&[UT1 [U UB I (A2-13) -

.~= ." d I I

=[I A.jB]

0 /,

Therefore, equation (A2-3) holds and the proof is complete. Jim [541 also notes that there

is no further restrictions on possible forms of the matrix filter Ws other than satisfying

equations (A2-1) and (A2-2). If Ws is valid, then so is any non-singular transformation of

ws.
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